
1	of	32

Agility is a Stable Requirement

Graham McLeod inspired.org
December 2017

Abstract

Change	in	technology,	business	and	society	is	ever	present	and	accelerating.	It	is	very	
unlikely	to	slow	down,	thus	it	is	a	stable	requirement.	Our	methods	of	doing	strategy,	
devising	future	architectures	and	delivering	systems	capabilities	in	support	of	business	
processes,	capabilities	and	delivery	of	services	and	products	therefor	need	to	address	
this.	
A	great	deal	of	effort	has	been	applied	in	Agile	Methods	over	the	past	two	decades	to	
accelerate	the	system	development	process,	i.e.	doing	things	faster.	No	matter	how	
quickly	they	deliver,	however,	these	methods	often	produce	something	inDlexible.	This	
paper	argues	for	a	broader	approach,	which	looks	at:	the	context	(much	of	the	change	
required	is	outside	the	system	delivery	space;	the	focus	(what	should	we	be	changing	
and	why?);	and	three	approaches	to	achieving	the	change	with	respect	to	system	
deliver:	doing	less	things	(de-scope,	use	packages,	libraries,	components,	frameworks);	
do	things	faster	(agile	methods,	automation,	generation)	and	make	more	Dlexible	things	
(runtime	adaptable	or	domain	model	driven	systems).	The	last	of	these	is	an	
unconventional	approach	that	holds	promise,	even	if	you	currently	don’t	practice,	or	
succeed	with,	agile	methods.	
Finally,	we	also	address	the	dilemma	of	accelerated	delivery	while	dealing	with	large	
legacy	application	landscapes.

http://www.inspired.org

2	of	32

		 Intentionally	blank

3	of	32

Table	of	Contents

Abstract 1
Agility	is	a	Business	Requirement 5
DeDining	Agility 5
Figure		1	-		Dimensions	of	Change	to	Achieve	Business	Agility 5

Agile	Methods	(Doing	things	faster) 6
Figure		2	-		Agile	Manifesto 7
Figure		3	-		Typical	Agile	Lifecycle	Source:	Scrum	Alliance 8

Dangers	of	“Agile” 9
Achieving	Agility	in	Software	Solutions 10
Figure		4	-		Typical	“Waterfall”	Lifecycle	 10
Figure		5	-		Contrasting	Waterfall	and	Agile	Lifecycles	PMO	=	Project	Management	OfDice 11

Delivering	More	Rapidly 11
Figure		6	-		Traditional	Waterfall	Lifecycle 11
Figure		7	-		Iterative	Incremental	Lifecycle 12
Figure		8	-		Agile	Lifecycle 12
Figure		9	-		DevOps	Lifecycle 13

Leveraging	Prior	Effort	(Doing	less	things) 13
Figure		10	-		Part	of	an	old	stone	built	foundry	in	Moratac	Park,	North	Carolina	 14
Use	Component	Libraries	and	Frameworks 14
Figure		11	-		Rapid	Construction	with	Pre-Built	Components	Source:	https://i.pinimg.com 15
Figure		12	-		Prefabricated	Structure	delivered	to	site 16

Use	Reference	Models	and	Patterns 16
Figure		13	-		A	hospital	architecture	blueprint,	or	pattern	Source:	www.hhbc.in 17
Figure		14	-		Frameworx	from	the	Telemanagement	Forum		provides	generic	
models	for	Telcos 17

Generate	Detail 18
Figure		15	-		3D	Printed	House	Source:	https://all3dp.com 18

Domain	SpeciDic	Modeling	and	Generation 19
Figure		16	-		Domain	SpeciDic	Modeling	Activities	Source:	MetaCase 19
Figure		17	-		DSM	language	and	generator	development	does	incur	an	overhead,		
but	it	can	be	small.	Source:	MetaCase 20
Figure		18	-		DSM	development	may	be	recouped,	even	in	an	initial	project	Source:	MetaCase 20
Figure		19	-		DSM	Projects	vs	Conventional	Development	Source:	MetaCase 21

Reuse	and	Ensure	Adaptability 21
Do	Less	Things	Ourselves 22
Make	more	Flexible	Things 22
Figure		20	-		Cape	Town	International	Convention	Centre	-	A	conDigurable	facility	Source:	CTICC 23

Runtime	Adaptable	Systems 24
Figure		21	-		Relative	Productivity	of	Different	Languages	Source:	Software	Productivity	Research 25
Figure		22	-		EVA	Netmodeler	Architecture	Source:	inspired.org 26
Figure		23	-		Relative	Flexibility	and	Productivity	of	Technologies 27

Agility	and	Legacy 27

...
...

..
..

..
...

..

...
...

...
....................

...
...
...

..
...

..
.......................................

..
................

..

..
.......................................

...

...
...

..
...

...
...........

...

..
...
...

.....

...
.

...
..

...

4	of	32

Figure		24	-		Software	visualization	with	Moose	tools 28

Harvest,	ReModel,	Forward	Generate 28
Figure		25	-		Code	Harvesting	and	Forward	Generation	with	DSM 29

The	Lists 30
Figure		26	-		Factors	affecting	agility 30

Promoting	Organizational	Agility 30
References	and	Further	Reading 32
Papers 32
Presentations 32
Videos 32
Websites 32

...

...
..

...
...

...
...

...
...

...
...

5	of	32

Agility	is	a	Business	Requirement

Very	few	would	dispute	the	need	for	agility	in	today’s	business	world,	government	
organizations	and	NGOs.	Agility	is	needed	to	respond	to	increased	competition,	
globalisation,	governance/regulation	and	changes	in	technology,	customer	expectations	
and	business	models.	No	one	wants	to	be	a	Kodak	in	a	digital	photography	world,	or	an	
Encylopaedia	Britannica	when	Encarta	or	Wikipedia	obliterate	your	business	model.	
Given	that	technology,	business	and	societal	change	is	ever	accelerating,	it	is	highly	
unlikely	that	the	need	for	agility	will	ever	decrease.	This	leads	to	the	surprising	
conclusion	that	Agility	is	a	Stable	Requirement.	
If	it	is	a	stable	requirement,	we	should	be	able	to	devise	ways	of	achieving	it.	The	rest	of	
this	paper	examines	the	implications	of	this	realisation	and	explores	ways	to	achieve	
agility.	

Defining	Agility

For	the	purposes	of	our	discussion,	we	deDine	agility	as
The	ability	to	successfully	adapt	to	new	circumstances	or	opportunities	

in	a	rapid	and	sustainable	manner

For	a	business	this	includes	the	ability	to	adapt	or	adjust:
• Business	Model	and	Strategy
• Organization	Structure,	Culture	and	StafDing
• Business	Processes
• Products	and	Services
• Channels	for	Delivery
• Arrangements	with	Business	Partners
• Skills	and	Techniques
• Supporting	Systems,	Information	and	Technology
We	can	represent	the	different	focus	areas	in	the	following	graphic:

Figure		1	-	Dimensions	of	Change	to	Achieve	Business	Agility

6	of	32

Notice	that	IT/IS	is	only	one	of	many	aspects	that	require	agility.	Achieving	agility	in	the	
other	areas	is	mostly	a	concern	of	disciplines	including:
• Strategy/Business	Architecture
• Change	Management/Programme	Management
• Organization	Design
• Process	Engineering
• Product	and	Service	Development
• Contracting
• Training
• Enterprise	Architecture
• Project	Management
Culture	is	also	a	very	important	element	in	achieving	agiity.	An	empowered	workforce	of	
small	teams	with	interdisciplinary	skills	working	in	a	learning	organization	culture	will	
deDinitely	outperform	an	autocratic	formal	one.	
For	the	IT/IS	element,	agility	includes	adapting:
• Technologies	in	use
• Infrastructure	supporting	the	business
• Application	systems	capabilities
• Information	capture,	storage,	processing,	sharing,	analysis	and	visualisation	

capabilities
Bearing	in	mind	that	IT/IS	is	only	a	fraction	of	the	full	picture,	we	will	zoom	in	on	
approaches	to	achieving	agility	in	this	dimension.	We	plan	to	address	the	other	
dimensions	in	future	papers.	

Agile	Methods	(Doing	things	faster)

Many	organizations	have	adopted	Agile	Methods	(e.g.	Scrum,	Disciplined	Agile,	Scaled	
Agile,	Extreme	Programming,	Crystal	etcetera)	as	a	means	of	achieving	agility.	The	
earlier	methods	and	versions	of	methods	primarily	focussed	on	the	rapid,	incremental	
delivery	of	application	systems.	While	relatively	successful	in	this	goal,	we	can	
immediately	appreciate	from	the	foregoing,	that	this	is	a	small	part	of	the	overall	scope	
mentioned	above.	
The	Agile	Manifesto,	drafted	by	a	group	of	software	development	luminaries	in	2001,	set	
out	some	important	principles.	

7	of	32

Figure		2	-	Agile	Manifesto

Note	that	it	emphasises	the	priority	of	items	on	the	left	over	those	on	the	right.	It	does	
not,	as	many	adherents	proclaim,	eliminate	the	items	on	the	right.	Note	too,	that	it	
addresses	Software	Development.	In	our	view,	a	method	should	target	Solution	
Development	which	is	broader	than	software	only,	in	that	it	will	address	other	elements	
required	to	solve	the	business	problem,	including:
• Documentation	sufDicient	for	the	installation,	operation,	support	and	enhancement	

of	the	delivered	system	by	parties	other	than	the	developers
• Procedures	around	the	system	to	ensure	its	successful	operation	in	its	intended	

context
• Conversion	of	data	to	the	system	
• Integration	of	the	solution	to	the	context	in	which	it	must	operate
• IdentiDication	of	reusable	components	and	services	that	may	be	leveraged	in	other	

efforts
• Quality	assurance	through	testing	and	other	means	(e.g.	inspections)	to	ensure	the	

correctness,	robustness	and	compliance	of	the	solution
Agile	Methods	target,	inter	alia,	the	following	goals:
• Rapid	delivery	of	systems	capability	to	the	business
• High	levels	of	sponsor	and	user	engagement	in	decision	making	during	the	design,	

build	and	testing	activities
• ClariDication	of	unclear	or	unknown	requirements	through	mock-ups,	prototyping,	

facilitation	and	iteration
• Gaining	experience	of	new	approaches	or	technologies	early	to	facilitate	learning	

and	eliminate	reliance	on	untested	assumptions
• Visibility	of	progress

8	of	32

• Collaborative	teamwork
They	use	a	variety	of	techniques	and	practices	to	facilitate	or	achieve	these	goals,	
including:
• Feature	Requirements	Lists	or	Issue	Backlogs	-	to	capture	and	agree	requirements	

and	allow	grouping	of	these	to	scope	an	iteration,	agreeing	priorities	with	sponsor	
and	users

• Sprints	-	intense	bursts	of	activity	with	very	focussed	goals,	including	delivery	of	
working	software

• Standup	meetings	-	to	share	progress,	encourage	collaboration,	reduce	meeting	
times	and	keep	administration	overhead	low

• Visible	reporting	(e.g.	Burn	down	charts)	to	make	progress	and	status	visible	and	
shared	and	to	focus	effort	towards	goals

• Pair	programming	-	to	apply	more	than	one	mind	to	the	problem	and	generate	
backup	skills	/	provide	coaching

• Continuous	planning,	integration	and	(automated)	testing
• Test	Driven	Development	(TDD)	where	tests	are	developed	Dirst,	and	software	

subsequently	to	pass	the	tests
• Lean	concepts	which	include	the	ideas	of	doing	just	enough	to	be	useful	and	gauging	

success	before	committing	more	resources,	or	pivoting	to	a	more	useful	direction.	
These	and	kanban	concepts	also	favour	limiting	work	in	progress	to	ensure	that	
focus	is	high	and	productivity	is	improved	by	limiting	multi-tasking

• Elimination	of	any	“might	be	needed”	requirements	-	the	term	YAGNI	(You	aren’t	
gonna	need	it)	has	been	coined	to	summarise	this,	in	the	belief	that	users,	analysts,	
designers	and	programmers	are	poor	at	predicting	the	future,	so	we	should	not	
waste	time	on	any	requirements	that	are	not	absolutely	known	to	be	essential

Figure		3	-	Typical	Agile	Lifecycle
Source:	Scrum	Alliance

9	of	32

Agile	requires	certain	factors	to	permit	its	success,	including:
• High	level	of	trust	between	the	sponsor	and	development	organization.	After	all,	

there	is	no	contracted	value/scope	for	the	money	that	will	be	spent,	as	in	traditional	
contracting	/	waterfall.	Rather,	the	sponsor	commits	to	funding	the	developers	at	a	
certain	rate	in	the	faith	that	they	are	competent,	will	be	productive	and	will	focus	on	
the	right	issues	to	deliver	value	to	the	business.	This	kind	of	trust	takes	time	and	
good	history	to	establish

• Agile	methods	are	no	substitute	for	good	skills.	In	fact,	successful	use	of	Agile	will	
often	require	higher	skills,	since	team	members	must	exercise	much	more	individual	
judgement	and	discretion.	Agile	should	thus	not	be	attempted	with	a	team	of	juniors	
with	little	experience.	They	can	certainly	be	included	in	a	team	with	more	
experience,	but	having	experience	on	hand	is	a	pre-requisite	for	success

• Agile	relies	a	lot	on	people.	Continuity	of	staff	and	full	time	commitment	to	the	
project	are	necessary	to	ensure	that	the	tacit	knowledge	in	play	is	not	lost	or	diluted

Dangers	of	“Agile”

Agile	is	sometimes	used	as	an	excuse	for	various	ills.	Common	issues	arising	from	the	
abuse	or	misunderstanding	of	Agile	include:
• Lack	of	architecture	-	assuming	that	we	can	“build	it	as	we	go”,	resulting	in	poorly	

architected	systems	that	do	not	adhere	to	good	principles	and	will	be	difDicult	to	
maintain	in	future	or	which	do	not	Dit	into	the	context	where	they	must	operate.	In	
fact,	better	agile	methods	do	cater	for	architectural	requirements,	e.g.	by	doing	an	
architecture	“spike”	before	commencing	detail	development

• Lack	of	documentation	-	Although	Agile	favours	people	and	interaction	over	
administration	and	documentation,	it	does	not	say	we	should	not	document.	
Remember	that	we	need	to	produce	an	installable,	operable,	maintainable	solution

• Rehashing	requirements	that	we	already	know.	Yes,	Agile	is	a	great	way	to	reDine	
unclear	requirements,	or	discover	unknown	ones.	That	does	not	mean	that	all	our	
requirements	are	unknown	or	unique	to	this	project.	We	can	certainly	save	a	huge	
amount	of	time	and	effort	by	simply	documenting	our	known	requirements	or	using	
established	frameworks,	reference	models	and	patterns

• Under-delivering	on	scope.	Agile	projects	will	often	cut	scope	to	meet	a	deadline.	
That	can	be	a	good	technique,	provided	that	we	do	not	do	it	to	the	detriment	of	the	
business	requirements	and	priorities.	We	have	seen	Agile	projects	that	reduced	the	
scope	beyond	a	“minimum	viable	product	(MVP)”	to	deliver	something	not	useful	to	
the	business

• Focus	on	functionality	at	the	expense	of	other	requirements,	such	as	integration	to	
other	systems,	performance,	robustness	or	scalability.	We	must	pay	adequate	
attention	to	non-functional	requirements	as	well.	Failure	to	do	so	can	ultimately	
doom	the	project	and	solution

Newer	Agile	Methods	(such	as	Scaled	Agile	(SaFe)	Disciplined	Agile	(DaD))	are	
addressing	issues	beyond	just	software,	and	increasingly,	issues	such	as	architecture	and	
Dit	to	organizational	objectives.	These	are	encouraging	developments.	In	the	next	section	
we	will	look	at	ways	to	achieve	agility	and	where	Agile	Methods	Dit	in	this.

10	of	32

Achieving	Agility	in	SoCware	SoluEons

The	primary	approach	followed	to	improve	agility	in	software	is	to	try	to	reduce	the	
time	between	identifying	a	need	and	delivering	a	solution.	The	traditional	“waterfall”	
lifecycle	had	a	series	of	steps,	more	or	less	in	sequence	with	a	“Dlow”	from	earlier	to	later	
stages.	Discovery	of	new	requirements	or	disproving	assumptions	later	in	the	lifecycle,	
often	required	“cycling	back”	to	an	earlier	stage	and	a	measure	of	rework	to	continue.	
The	overall	lifecycle	could	take	a	while	to	complete,	often	to	the	frustration	of	business	
under	pressure	for	rapid	calendar	time	delivery.	

Figure		4	-	Typical	“Waterfall”	Lifecycle

Iterative	and	incremental	forms	were	evolved	to	improve	the	delivery.	In	these	
approaches,	a	subset	of	requirements	would	be	selected,	developed	and	delivered,	
before	cycling	back	to	tackle	more	requirements.	This	had	the	advantage	of	earlier	
delivery	of	priority	items	and	being	able	to	apply	learning	from	earlier	iterations	to	later	
ones.	
These	approaches	worked	well,	provided	that	the	requirements	were	fairly	well	
understood.	However,	many	classes	of	problems	arose	(especially	as	Information	
Systems	and	Technology	expanded	into	new	types	of	applications	never	before	
contemplated)	where	the	requirements	were	not	understood	at	the	outset.	In	these	
cases	a	more	facilitative	/	prototyping	/	experimental	style	emerged	that	led	to	“Agile”	
methods,	which	assume	that	requirements	are	not	understood	and	will	only	become	
clear	during	the	project.	
Agile	emphasises	high	sponsor/user	involvement,	teamwork,	communication,	delivery	
and	feedback	in	rapid	iterations.	Scope	may	be	adjusted	in	each	iteration	in	consultation	
with	the	sponsor	and	learning	from	earlier	iterations	is	fed	into	subsequent	ones.	Each	
iteration	has	elements	of	requirements,	design,	development,	testing	and	may	deploy	
working	software.	We	contrast	the	waterfall	and	agile	lifecycles	below:

11	of	32

Figure		5	-	Contrasting	Waterfall	and	Agile	Lifecycles
PMO	=	Project	Management	OfQice

Delivering	More	Rapidly

A	lot	of	method	emphasis	over	the	years	has	been	on	reducing	the	time	to	delivery	from	
identiDication	of	a	business	requirement.	We	can	see	this	progression	as	follows:

Figure		6	-	Traditional	Waterfall	Lifecycle

In	the	traditional	waterfall	cycle,	deployment	occurs	quite	late	in	the	cycle	and	a	long	
time	after	requirements	are	Dirst	discussed.	This	can	be	a	problem	for	business	if	the	
requirement	is	urgent,	e.g.	complying	with	a	sudden	legislative	change.	Other	problems	
that	can	arise	are	that	the	requirement	changes	or	becomes	obsolete	before	the	delivery	
of	the	software	capability.	This	can	lead	to	a	great	deal	of	wasted	effort	and	investment.	
If	the	requirements	are	poorly	understood,	or	unclear,	the	risk	of	delivering	something	
that	is	not	optimal	is	very	high.	Fixing	it	can	also	incur	a	long	delay	and	high	cost	as	we	
wait	for	another	cycle.	
To	address	these	concerns,	the	iterative	incremental	approach	broke	requirements	up	
into	priority	(and	dependency)	subsets,	each	of	which	could	be	taken	through	the	
lifecycle	in	a	shorter	period.	This	is	illustrated	below.	

12	of	32

Figure		7	-	Iterative	Incremental	Lifecycle

Note	that	the	phases	are	still	there,	but	they	are	shorter	since	each	is	tackling	a	smaller	
scope.	There	is	earlier	and	more	frequent	delivery.	As	in	the	Digure,	there	is	also	
opportunity	to	overlap	the	development	if	multiple	teams	are	available.	
Agile	methods	recognise	that	requirements	are	often	unclear	or	may	evolve	during	the	
lifecycle,	so	they	accommodate	requirements	change	both	within	and	between	
iterations,	See	below.	

Figure		8	-	Agile	Lifecycle

By	allowing	this,	they	overcome	the	problem	of	wasted	effort	on	incorrect	or	obsolete	
requirements.	As	we	mentioned	previously	though,	there	are	a	number	of	preconditions	
to	getting	Agile	right,	as	well	as	dangers	from	its	misapplication.	
The	combination	of	Agile	Methods,	Virtualised	infrastructure,	Integration	between	Agile	
Development,	Automated	Testing	and	Deployment	has	led	to	the	DevOps	movement,	
where	Development	and	Operations	are	brought	much	closer	together.	

13	of	32

Figure		9	-	DevOps	Lifecycle

The	requirements	to	deployment	cycle	is	shortened	by	integrated	methods,	high	
collaboration	across	functional	areas,	and	advanced	integrated	tool	chains	that	can	take	
the	output	from	development	tools,	feed	it	to	test	suites	and	the	items	that	pass	testing	
to	operations	in	a	seamless	process.	Continuous	deployment	is	an	extreme	form	of	this	
where	each	feature	or	change	can	be	deployed	immediately	it	is	tested	in	a	“mini	
release”.	This	will	often	also	require	the	adoption	of	service	oriented	approaches	so	that	
deployment	of	components	can	occur	without	needing	a	complete	monolithic	product	to	
be	built	or	linked.	In	advanced	shops,	such	as	Facebook	or	AirBnb,	there	could	be	several	
dozen	“pushes”	into	production	on	a	daily	basis.	Google,	for	example,	may	deploy	several	
different	change	scenarios	in	parallel	and	monitor	which	are	more	successful	in	
production,	before	decommissioning	the	less	successful	candidates.	

Leveraging	Prior	Effort	(Doing	less	things)

The	slowest	way	to	build	something	is	doing	it	from	raw	materials,	uniquely	for	the	
current	requirement.	An	analogy	here	would	be	building	a	stone	structure	where	stones	
are	individually	prepared.	

14	of	32

Figure		10	-	Part	of	an	old	stone	built	foundry	in	Moratac	Park,	North	Carolina

Think	about	the	effort	involved	in	construction:
• Finding	and	transporting	stone
• Cutting	stone	to	size	and	shape	by	hammer	and	chisel
• Fitting	each	unique	stone	carefully	with	its	neighbours
• Cutting	lumber,	planing	it	into	planks,	making	door	frames	and	doors
• Obtaining	brass	for	hinges,	cutting,	beating	and	Diling	it	into	shape	to	form	hinges,	

handles	etc.	
This	is	certainly	not	a	rapid	process.	It	requires	high	skills	and	a	great	deal	of	effort.	
Changing	or	adapting	the	resulting	structure	will	not	be	easy	or	quick.	
In	IT	terms,	this	is	analogous	to	developing	a	system	from	source	code	only,	without	
using	any	pre-existing	libraries	or	infrastructure	software.	Lets	look	at	some	options	to	
achieve	greater	agility.	

Use	Component	Libraries	and	Frameworks

If	we	have	access	to	pre-made	components,	we	can	focus	more	on	construction	and	less	
on	the	basic	component	making.	Consider	the	Digure	below.	Here	we	have	bricks,	
cement,	tiles,	timber	trusses,	door	frames	etc.	delivered	to	site.	The	primary	effort	here	
is	in	combining	these	into	unique	combinations	to	meet	the	client’s	requirements.	Effort	
is	much	lower	and	time	to	build	much	less.	We	can	probably	also	get	by	with	lower	
levels	of	skill.	

15	of	32

Figure		11	-	Rapid	Construction	with	Pre-Built	Components
Source:	https://i.pinimg.com

In	the	IT	environment	today	we	have	very	large	libraries	of	components	designed	to	
work	together	and	to	provide	for	the	building	of	nearly	all	common	solutions	and	
capabilities.	
Frameworks	are	large	component	(also	class	and	resource)	libraries	which	provide	
integrated	and	compatible	support	as	well	as	architectural	guidance	on	how	to	layer	and	
combine	the	elements	successfully.	Examples	include	Microsoft	.Net,	Java	2	Enterprise	
Edition	(J2EE)	and	Apple’s	Core	and	Application	Services.		Each	of	these	provides	
developers	with	a	plethora	of	capabilities	which	can	be	accessed	using	common	
application	programming	paradigms	and	facilities.	They	insulate	developers	from	a	
great	many	technical	details.
Taking	pre-fabrication	to	the	next	level,	we	can	make	use	of	complete	pre-fab	buildings,	
delivered	to	site	and	just	connected	to	the	infrastructure	(e.g.	water,	electricity	and	
sewage).	
In	IT	terms,	this	equates	to	the	use	of	packages	for	at	least	part	of	the	solution.	The	idea	
is	that	we	use	commodity	designs	and	constructions	for	generic	requirements,	and	only	
adapt	or	develop	bespoke	elements	where	no	standard	ones	are	available	that	will	do	
the	job.	
Packages	can	reduce	time	to	market	and	investment	required	dramatically,	if	they	suit	
requirements	well	and	are	not	heavily	modiDied.	The	more	we	modify	them,	the	more	we	
lose	the	advantages	we	seek	and	slip	back	into	development,	sometimes	with	
requirements	for	rare	and	expensive	skills	in	esoteric	tools.	

16	of	32

Figure		12	-	Prefabricated	Structure	delivered	to	site

Use	Reference	Models	and	Pa:erns

Components	reduce	the	effort	to	build	the	solution.	Where	we	have	to	design	the	
solution	or	elements	of	it,	we	can	save	time	by	using	reference	models	and	patterns.	
Patterns	are	at	a	design	or	architecture	level,	rather	than	the	physical	component	level.	
They	capture	knowledge	of	proven	approaches	that	work	and	that	can	be	easily	adapted	
to	our	unique	needs.	An	example	would	be	the	pattern	used	for	a	clinic,	where	there	
would	be	a	reception	area,	assessment	area,	consultation	rooms,	treatment	area,	
dispensing	facility,	test	area	and	ablution	facilities	for	staff	and	patients.	The	pattern	
could	be	scaled	up	or	down	depending	upon	the	budget	and	the	number	of	clients	it	is	
expected	to	serve.	

17	of	32

Figure		13	-	A	hospital	architecture	blueprint,	or	pattern
Source:	www.hhbc.in

An	IT	equivalent	would	be	the	Model	View	Controller	(MVC)	pattern	in	graphical	user	
interface	systems,	which	provides	architectural	guidance	in	how	to	split	responsibilities	
between	layers	of	the	software.	This	can	be	adapted	for	desktop,	web	or	mobile	use.	
Where	patterns	address	particular	domain	knowledge,	they	are	typically	referred	to	as	
reference	models.	Examples	in	industry	include	the	BAIN	reference	models	for	services	
in	Banking,	the	ACCORD	models	in	Insurance,	the	ARTS	models	in	Retail	and	the	
FrameWorx	models	for	process,	data	and	applications	in	Telecommunications.	

Figure		14	-	Frameworx	from	the	Telemanagement	Forum	
provides	generic	models	for	Telcos

These	can	embody	hundreds	of	years	of	analysis	effort	and	can	save	a	great	deal	of	work	
during	analysis,	architecture	and	design.	They	also	typically	facilitate	interoperability	of	
our	solutions	with	business	partners	and	packages	obtained	from	industry.	Their	use	
can	reduce	risk	and	time	to	delivery,	as	well	as	cost.	These	mainly	reduce	time	in	
analysis	and	design,	but	can	also	shorten	build,	test	and	integration	time	by	using	
proven	solutions	and	models.	

18	of	32

Generate	Detail

Development	normally	includes	the	activities	of	requirements	elicitation,	design,	
building	and	testing.	Requirements	and	design	are	best	done	as	models	to	ensure	their	
completeness,	rigour	and	accurate	communication	between	parties.	
The	build	and	test	activities	are	often	the	most	labour	intensive.	Software	generation	
approaches	eliminate	a	lot	of	this	effort	by	generating	the	code	from	models	capturing	
the	requirements	and	design.	Traditionally,	this	has	been	touted	as	a	major	boon	to	
productivity,	but	has	seldom	delivered	in	practice.	Approaches	in	this	space	include	
Model	Driven	Design	(MDD)	from	the	Object	Management	Group	(OMG).	Problems	in	
achieving	higher	productivity	were	found	to	be	mostly	due	to		the	models	being	
solution	/	technology	oriented	and	generic	rather	than	requirement	/	domain	oriented	
and	speciDic.	
An	analogy	here	would	be	modeling	a	house	in	terms	of	foundations,	brick	walls,	door	
and	window	frames,	rafters	and	rooDing	sheets.	These	are	generic	components	at	a	fairly	
low	level.	Specifying	the	model	at	this	level	does	not	save	a	lot	of	effort	over	building	it.	
However,	if	we	could	specify	the	house	at	the	level	of	a	conceptual	architecture	(style	
and	Dloor	plan	/	rooms	only)	and	generate	the	Dinished	house	from	that	automatically	
(e.g.	by	3D	Printing)	then	we	could	see	major	gains	in	productivity	and	rapid	
development.	

Figure		15	-	3D	Printed	House
Source:	https://all3dp.com

19	of	32

The	systems	equivalent	of	this	is	known	as	Domain	SpeciDic	Modeling	(DSM).	
Requirements	are	modeled	using	domain	concepts,	such	as	Customer,	Product,	Order,	
Branch	and	associated	processes	and	events.	Code	generation	produces	working	
software	respecting	issues	such	as	architecture,	standards	compliance,	security	and	
other	contextual	requirements	and	targeting	the	technology	platform	of	choice.	There	
are	major	savings	in	time	and	cost,	since	the	effort	to	create	the	architecture	and	
generators	is	expended	only	once	and	the	generated	code	is	error	free	since	it	follows	
previously	tested	patterns.		

Domain	Specific	Modeling	and	GeneraEon

Figure		16	-	Domain	SpeciQic	Modeling	Activities
Source:	MetaCase

In	industrial	projects,	DSM	has	proven	highly	productive.	It	is	used	extensively	in	the	
automotive	industry,	for	example,	to	rapidly	generate	new	software	for	new	generations	
of	vehicles.	A	new	model	could	be	launched	every	two	years	or	so	requiring	millions	of	
lines	of	custom	code	to	manage	fuel,	emissions,	power	delivery,	transmission,	traction,	
braking,	entertainment,	comfort	systems,	lighting,	navigation	and	a	myriad	other	things	
reliably.	Coding	this	in	the	conventional	way	in	the	required	time	and	with	the	requisite	
reliability	and	quality	is	simply	not	feasible.	Other	industries	which	rely	heavily	upon	
these	techniques	include	telecommunications	(e.g.	development	of	switches),	cellular	
(development	of	handset	software)	and	other	electronics	manufacture,	where	devices	
are	increasingly	driven	by	software.	DSM	is	not	restricted	to	these	Dields,	but	has	also	
been	used	effectively	in	banking/Dinance,	insurance/assurance,	agriculture,	plant	
automation	and	other	applications.	

20	of	32

DSM Solution Development Time

Man days

Figure		17	-	DSM	language	and	generator	development	does	incur	an	overhead,	
but	it	can	be	small.	Source:	MetaCase

There	is	an	overhead	in	creation	of	the	domain	speciDic	language	and	associated	
generators	for	the	Dirst	project(s),	but	the	savings	downstream	pay	back	handsomely.	

Figure		18	-	DSM	development	may	be	recouped,	even	in	an	initial	project
Source:	MetaCase

21	of	32

Results of the studies
� Laboratory study

– Measuring time: at least 750% faster
– Asking opinions: results (scale 1-5, 5 best):

� Pilot
– Measuring time:

>900% faster

Figure		19	-	DSM	Projects	vs	Conventional	Development
Source:	MetaCase

Overall	productivity,	quality	and	match	to	domain	requirements	can	be	improved	
substantially,	as	well	as	time	to	market.	

Reuse	and	Ensure	Adaptability

Another	way	to	reduce	effort,	and	thus	time,	to	delivery,	is	to	reuse	what	we	have	done	
previously.	This	can	occur	in	the	form	of	components,	frameworks,	patterns	and	services	
as	detailed	previously.	It	can	also	occur	in	the	form	of	reusing	code,	which	we	have	
ensured	is	well	structured	enough	to	be	intelligible,	well	documented	enough	to	change	
safely	and	well	stored	in	a	safe	place	so	that	it	is	easily	Dindable.	
A	further	requirement	for	reuse	is	that	the	code,	components,	frameworks	etc.	are	of	
good	quality.	We	do	not	want	to	reuse	and	proliferate	problems	and	bugs!	Achieving	
reuse	is	not	easy	and	requires	premeditation,	discipline,	skills	and	tool	support.	Some	
areas	we	need	to	pay	attention	to	include:
• Architecture,	so	that	components	are	coherent	and	focussed	on	achieving	one	

purpose	well
• Design,	so	that	elements	are	well	conceived,	have	clean	interfaces	and	can	inter-

operate
• Standards,	so	that	things	are	compatible	and	compliant
• Service	orientation	and	loose	coupling,	so	that	it	is	relatively	easy	to	swap	

components	in	or	out,	or	to	reuse	things	in	different	contexts
• Reliability,	to	ensure	that	we	can	safely	use	things	without	experiencing	problems
• Performance,	so	that	elements	can	be	used	in	different	scale	applications
• Security,	to	ensure	that	we	do	not	expose	the	organization	to	undue	risk

22	of	32

• Documentation	and	knowledge	management,	so	that	components	are	easily	
discoverable	and	potential	users	can	assess	their	suitability	quickly	and	easily

Do	Less	Things	Ourselves

Another	way	to	accelerate	delivery	is	to	do	less	things	ourselves.	We	have	previously	
discussed	saving	effort	by	using	components,	libraries,	frameworks	and	reference	
models.	We	can	also	achieve	it	by	getting	someone	else	to	do	some	of	the	work.	This	may	
not	save	effort	or	cost,	but	it	can	alleviate	resource	constraints	and	reduce	calendar	time	
to	delivery.	A	pre-requisite	for	this	is	that	we	have	a	good	idea	of	requirements	and	
architecture	at	a	high	level,	so	that	we	can	apportion	the	work	and	responsibility.	
A	further	requirement	is	that	we	have	a	productive	and	trusted	outsource	partner	who	
will	Dit	into	our	work	approach	and	deliver	products	and	components	compatible	with	
our	environment.	Unfortunately,	Dinding	a	suitable	partner	and	building	the	necessary	
collaborative	work	methods	may	take	a	lot	of	effort	and	time.	It	a	bit	like:	“God	grant	me	
patience,	but	hurry!”.

Make	more	Flexible	Things

A	Dinal	way	in	which	we	can	become	more	agile,	is	different	to	those	proposed	above.	
Essentially	the	previous	approaches	concentrated	mostly	on	being	able	to	deliver	the	
end	product	more	quickly.	There	is	an	orthogonal	approach	which	instead	shifts	the	
focus	to	delivering	a	product	which	is	itself	more	Dlexible,	obviating	the	need	for	new	
delivery.	This	harks	back	to	our	title	of	“Agile	is	a	Stable	Requirement”.	
A	physical	example	of	this	would	be	the	situation	where	we	build	a	conference	centre.	
We	know	up	front	that	the	facility	must	be	able	to	adapt	to	accommodate	the	needs	of	a	
wide	variety	of	events,	ranging	from	trade	shows,	to	music	concerts,	agricultural	shows,	
sports	events,	business	conferences	and	industry	courses	and	tutorials.	We	need	to	be	
able	to	accommodate	the	events	in	short	order	and	in	any	sequence	of	variety.	This	
requires	that	the	facility	we	design	and	build	must,	itself,	be	able	to	adapt	very	quickly.	
This	can	be	accommodated	by	having	large	covered	spaces	which	are	reconDigurable	via	
movable	walls	into	different	spaces,	while	catering	in	more	permanent	ways	for	the	
needs	which	are	common	across	all	functions,	such	as	catering,	parking,	ablutions	etc.	
A	great	example	of	this	is	the	Cape	Town	International	Conference	Centre	(CTICC).	It	can	
be	conDigured	in	less	than	24	hours	to	cater	for	all	the	above	mentioned	types	of	events.	
This	is	more	rapid	than	any	construction	method	could	possibly	hope	to	achieve.	The	
reconDiguration	is	achievable	because	the	facility	was	designed	with	this	level	of	
adaptability	in	mind.	The	focus	is	on	an	adaptable	resulting	product,	rather	than	on	the	
build	process.	

23	of	32

Figure		20	-	Cape	Town	International	Convention	Centre	-	A	conQigurable	facility
Source:	CTICC

In	IT	terms,	this	can	be	achieved	in	two	main	ways:
• Runtime	adaptable	systems	which	are	driven	by	user	conDigurable	meta	models,	

business	rules,	output	parameters	and	formulae.	They	can	be	adapted	by	users	who	
are	knowledgable	about	the	business	domain	without	needing	to	know	the	
underlying	technology

• Model	Driven	Development,	especially	DSM	as	discussed	above.	Here	the	system	
speciDication	is	maintained	as	a	set	of	integrated	models.	When	changes	are	required,	
the	necessary	changes	are	made	at	the	business	domain	model	level	and	new	code	is	
generated,	potentially	directly	to	production

The	former	style	allows	great	Dlexibility	and	can	cater	for	many	changes	to	business	
requirements	without	needing	technical	system	changes.	A	limitation	is	that	the	system	
will	often	be	less	efDicient	than	a	less	Dlexible	system,	so	this	approach	may	not	be	
appropriate	where	very	high	volumes	must	be	processed	or	response	times	are	very	
critical.	
The	second	style	is	almost	as	Dlexible,	but	does	still	require	the	generation	and	
deployment	steps,	although	these	can	be	automated.	It	is	able	to	address	high	demands	
for	volumes	and	critical	performance.	
In	effect,	the	above	debunks	the	You	Aren’t	Gonna	Need	It	(YAGNI)	principle	advocated	
in	Agile	methods	to	reduce	scope.	We	replace	it	with	YAGNI,	but	meaning	You	ARE	Going	
to	Need	It,	the	“it”	being	agility.	The	goals,	however	are	not	incompatible.	Remember	
that	Agile	evolved	to	assist	in	the	rapid	delivery	of	business	capabilities.	YAGNI	was	
applied	to	reduce	scope,	so	that	we	could	reduce	effort	to	deliver	more	rapidly.	So,	if	we	
now	turn	that	around,	are	we	increasing	scope	and	effort?	No,	but	there	is	a	trick.	If	we	
simply	added	more	function	for	things	that	we	might	need,	then,	yes,	scope	would	

24	of	32

increase	and	that	would	be	bad.	BUT	if	we	work	at	a	higher	level	of	abstraction	and	
identify	the	kinds	of	things	that	we	will	need	now	and	in	the	future,	we	can	often	reduce		
the	scope	of	the	system	further,	thus	saving	effort	and	time	in	the	original	development	
while	also	equipping	the	solution	with	the	ability	to	adapt	in	production	use	without	
more	development.	So,	this	is	a	win-win.	The	caveat	is	that	we	may	require	higher	skills	
in	conceiving,	designing	and	building	the	original	solution.	

RunEme	Adaptable	Systems

An	example	of	such	a	system	familiar	to	most	of	us	is	Microsoft	Excel	(or	other	
spreadsheets),	which	provides	a	range	of	generic	facilities	that	help	users	tailor	the	
system	to	their	needs	via	formulas,	headings	and	other	capabilities,	such	as	chart	
deDinitions.	The	generic	capabilities	anticipate	the	fact	that	users	will	have	a	very	broad	
range	of	requirements	which	differ	in	the	details,	but	have	underlying	similarities	(e.g.	
the	need	to	work	with	numbers,	manipulate	them	with	formulas,	organise	them	into	
tables	and	sort	them	in	various	ways.	Users	are	able	to	use	the	application	to	meet	their	
needs	in	short	order	without	recourse	to	developers	to	make	changes,	or	the	delay	and	
cost	of	software	development.	
Spreadsheets	have	consistently	measured	very	high	productivity	levels	when	empirical	
data	is	analyzed	for	delivery	of	given	requirements	in	speciDic	language	environments.	
Witness	the	following	statistics	from	Capers	Jones:

LANGUAGE

1st Generation default

2nd Generation default

3rd Generation default

4th Generation default

5th Generation default

ABAP/4

Access

ANSI BASIC

ANSI COBOL 74

ANSI COBOL 85

ANSI SQL

Assembly (Basic)

Assembly (Macro)

C

C++

CICS

LEVEL

1.00

3.00

4.00

16.00

70.00

20.00

8.50

5.00

3.00

3.50

25.00

1.00

1.50

2.50

6.00

7.00

AVERAGE SOURCE
STATEMENTS PER
FUNCTION POINT

320

107

80

20

5

16

38

64

107

91

13

320

213

128

53

46

25	of	32

Figure		21	-	Relative	Productivity	of	Different	Languages
Source:	Software	Productivity	Research

Language	Level	is	a	relative	productivity	indicator	for	computer	languages.	A	language	
rated	as	12	would	halve	the	programming	(build)	phase	of	a	project	relative	to	a	
language	rated	6.	If	the	language	is	also	accessible	to	domain/business	personnel	rather	
than	professional	computer	system	developers,	it	may	also	reduce	effort,	time	and	cost	
in	the	analysis	and	design	phases	as	well.	
Another	example	of	a	runtime	adaptable	system	is	the	EVA	Netmodeler	enterprise	
modeling	and	knowledge	repository	toolset	from	Inspired.org.	This	allows	runtime	
deDinition	of	a	meta	model	describing	the	concepts,	properties	of	these	and	relationships	
between	them,	of	relevance	to	a	user,	group,	domain	or	enterprise.	It	then	uses	this	
information	to	modify	user	interfaces,	reports,	visualization	tools	and	other	aspects	
dynamically	at	run	time.	

COBOL

Common LISP

Crystal Reports

DELPHI

EXCEL 5

FORTRAN 77

Haskell

HTML 3.0

JAVA

Machine language

Object-Oriented default

Objective-C

PASCAL

PERL

PowerBuilder

Reuse default

RPG III

SMALLTALK

Spreadsheet default

SQL

Visual Basic 5

3.00

5.00

16.00

11.00

57.00

3.00

8.50

22.00

6.00

0.50

11.00

12.00

3.50

15.00

20.00

60.00

5.75

15.00

50.00

25.00

11.00

107

64

20

29

6

107

38

15

53

640

29

27

91

21

16

5

56

21

6

13

29

26	of	32

Figure		22	-	EVA	Netmodeler	Architecture
Source:	inspired.org

In	one	instance	we	met	with	a	client	in	the	banking	industry	and	their	industry	
consultants	to	determine	requirements	in	support	of	a	strategy,	architecture	and	“re-
baselining”	project	to	be	conducted	across	three	continents.	We	drew	these	as	a	meta	
model	on	a	white	board	during	a	long	workshop	day.	In	the	evening	we	captured	the	
meta	model	to	conDigure	the	tool	to	address	the	problem	and	set	up	an	instance	on	a	
server	available	via	the	Internet.	The	following	day	we	demonstrated	the	tool	support	
for	the	problems	being	tackled	to	the	consultants	and	got	their	user	credentials.	We	
captured	these	into	the	tool	that	evening	and	the	following	day	the	tool	was	being	used	
to	capture	information	from	live	workshops	on	three	continents.	
The	key	to	this	rapid	deployment	was	again	the	fact	that	the	toolset	is	designed	to	cater	
for	many	and	varied	requirements	by	factoring	out	what	is	common	to	them	and	
supporting	that	in	a	way	that	users	can	tailor	to	their	needs.	Technically,	the	tool	has	
patterns	for	business	logic	and	user	interface	in	various	styles,	and	injects	the	structures	
to	which	these	should	apply	into	the	code	generated	from	these,	which	is	served	to	a	
browser	via	the	network.	More	detail	can	be	found	in	[McLeod,	2001].

27	of	32

Figure		23	-	Relative	Flexibility	and	Productivity	of	Technologies

Agility and	Legacy
Achieving	agility	going	forward	is	tough	enough.	But	most	sites	have	a	large	collection	of	
legacy	applications	which	represent	a	substantial	asset	(or	at	least	expenditure)	and	
underpin	operations.	Often	these	are	poorly	documented	and	have	“unravelled”	to	some	
extent	through	poor	maintenance,	so	that	their	original	architectures	and	design	has	
become	obscured.	How	do	we	leverage	these	and	make	such	an	environment	more	
agile?	We	can	very	seldom	afford	to	throw	it	away	and	start	from	scratch.	Even	if	this	
was	affordable	economically,	it	would	probably	not	be	practical	from	a	time	perspective.	
We	may	also	Dind	that	the	domain	knowledge	is	not	available	in	the	environment	and	
user	community,	but	is	embedded	in	the	old	applications.
Conventional	maintenance	relies	a	lot	on	reading	code.	This	is	a	daunting	prospect	when	
we	consider	that	a	legacy	application	(of	which	there	might	be	scores	or	hundreds)	can	
easily	represent	several	million	lines	of	code.	Surveys	show	that	maintenance	
programers	spend	as	much	as	80%	of	their	time	reading	code.	This	activity	hasn’t	
changed	much	since	the	1950’s,	with	the	exception	that	the	volume	of	code	has	
increased	exponentially.	This	is	a	poor	way	to	understand	an	existing	system.	It	does	not	
scale.	
Fortunately,	there	is	a	new	movement	advocated	by	Tudor	Girba	and	colleagues,	known	
as	Humane	Assessment.	The	idea	is	to	understand	systems	rapidly	without	being	cruel	
to	programmers.	We	already	apply	sophisticated	tools	to	understand	our	business	data	

28	of	32

and	to	generate	visualisations	and	insights	from	vast	data	collections	(“big	data”).	Here	
the	programmers	are	like	the	shoemakers	children	who	are	barefoot.	
Can	we	not	do	better	and	use	better	tools	and	techniques	to	solve	our	own	problems	as	
well	as	those	of	users?	Indeed	we	can.	Techniques	known	as	software	visualization	have	
been	developed	over	a	period	of	twenty	years	and	the	tools	supporting	these,	including	
the	Moose	analysis	platform	and	its	add	ons	and	extensions	have	become	very	
sophisticated.	

Figure		24	-	Software	visualization	with	Moose	tools

Essentially,	we	can	scan	existing	systems	(code)	to	identify	relevant	data	(e.g.	Classes	or	
deDinitions	representing	concepts	and	data	structures;	Functions,	Modules	and	Methods	
representing	functions	or	actions	which	operate	on	the	data	structures;	and	the	
relationships	between	these	e.g.	Which	code	depends	upon	which	other	parts	and	which	
code	uses	what	data).	The	data	can	then	be	visualized	using	a	variety	of	available	
techniques	to	identify	structure,	problems	and	opportunities	for	improvement.	This	can	
facilitate	rapid	maintenance	with	less	effort	and	risk.	

Harvest,	ReModel,	Forward	Generate

Taking	it	further,	we	can	supplement	the	analysis	with	some	human	expertise	to	derive	
domain	knowledge,	semantic	information	and	other	valuable	assets	from	the	existing	
software.	These	can	be	used	to	create	domain	frameworks	and	reference	models	for	
forward	engineering.	

29	of	32

We	can	then	couple	the	recovered	models	with	Domain	SpeciDic	Modeling	techniques	to	
create	a	powerful	Application	Renewal	method.	

Harvest
Knowledge

Augment
Knowledge

Generate
Solution

Legacy
Source
Code

Domain
Specific
Models

Technical
Architect

DSM
Driven

Application

New
Solution
Code

New
Solution
Runtime

Target
IDE

Reference
Model

Domain
Expert

Continuous
Business
Solution

Improvement

Continuous
Technical
Solution

Improvement

High Performance
Solution Required

Low Performance
Solution Required

User
Community

Figure		25	-	Code	Harvesting	and	Forward	Generation	with	DSM

Inspired	is	currently	developing	and	pioneering	these	techniques	and	is	seeking	
commercial	partners/customers	to	collaborate	on	these	efforts.	We	are	engaged	with	
the	authors	of	code	harvesting	and	DSM	techniques	and	tooling.	If	you	are	interested,	
please	contact	the	writer.	

30	of	32

The	Lists

In	this	section	we	summarise	some	of	the	critical	dimensions	that	promote	or	inhibit	
agility.	In	many	cases	these	will	have	incremental	effects	when	used	together.	In	our	
culture,	training,	methods,	management	practices	and	projects	we	should	try	and	do	as	
many	of	the	Promote	items	as	possible,	while	avoiding	as	many	of	the	Inhibit	items	as	
possible.	

Figure		26	-	Factors	affecting	agility

PromoEng	OrganizaEonal	Agility

The	forgoing	discussion	may	seem	daunting.	After	all,	there	are	many	dimensions	and	
many	associated	disciplines,	skills,	cultures,	techniques	and	tools	to	master	or	adopt.	
Where	do	we	start?
It	can	be	useful	to	take	a	leaf	out	of	the	book	of	continuous	improvement,	or	the	more	
formal	discipline	of	Six	Sigma,	while	avoiding	the	rigorous	statistical	side	of	the	latter.	
Effectively	we	follow	a	simple	cycle:
• Establish	Intent	-	Decide	what	we	want	to	achieve	(e.g.	Organizational	Agility)	and	

what	that	will	require,	via	decomposition	(e.g.	Agile	Friendly	Culture;	Ability	to	
Rapidly	Deliver	Systems	Capability	in	Production;	Ability	to	Flex	Business	Model	
etc.)

• Identify	the	biggest	bottlenecks	to	achievement.	What	are	our	current	worst	
performing	areas?	Maybe	it	is	a	very	autocratic	culture,	maybe	it	is	an	inability	to	
accurately	deDine	requirements,	maybe	it	is	a	quality	problem	in	the	delivered	
product.	This	is	best	done	by	looking	at	speciDic	performance	measures	and	

Promote Agility
High Skills
User Involvement
Frequent Short Meetings
Empowered Staff
High Level of Abstraction
Domain Specific Modeling
Integrated Methods
Model Oriented
Small Teams
Automation
High Quality
Good Infrastructure
Learning Culture
Colocated Teams
Visual Work, Progress
Collaboration. Mentoring
Informal with high trust
Developers have Domain Knowledge
Users have IT Knowledge
Continuity of Staff
Reuse
Team of Teams
Runtime adaptable product
Virtual infrastructure

Inhibit Agility
Low Skills
User Dis-engagement
Delayed Large Meetings
Centralised or Remote Decision Making
Low Level of Abstraction
Generic Modeling
Non-Integrated Methods
Document Oriented
Large Teams
Manual Work
Low Quality
Poor Infrastructure
Do What You are Told Culture
Distributed Teams
Hidden Work, Progress
Punitive, Authoritarian
Formal with low trust
Developers have only IT Knowledge
Users have only Domain Knowledge
Disrupted or Part Time Allocation of Staff
Building Anew
Command and Control
Design time adaptation
Traditional infrastructure

31	of	32

associated	benchmarks,	compared	to	our	performance.	E.g.	If	competitors	can	
deliver	a	new	service	to	the	market	in	3	months	and	we	take	10.	Find	the	top	3-5	
areas	which	are	under	our	control	and	amenable	to	change.	Focus	just	on	those	for	
the	next	while

• Improve	the	underperforming	areas	by	facilitating	cultural	change,	improving	
methods,	skills,	techniques	and	tools,	building	trust	and	whatever	other	focussed	
means	will	address	the	issue

• Iterate	-	once	change	is	achieved	in	an	area	and	veriDied	by	new	measurement,	select	
the	next	most	problematic	area(s)	for	attention	and	keep	doing	it

In	this	way	we	can	be	assured	that	we	are	always	making	progress.	It	may	seem	slow	at	
Dirst,	but	it	will	be	incremental	as	changes	combine	their	improvements	in	a	
multiplicative	way.	We	can	accelerate	change	by	the	application	of	more	effort,	resources	
or	money,	provided	that	they	are	always	focussed	on	doing	things	better,	not	just	faster.	

32	of	32

References	and	Further	Reading

Papers
McLeod,	Graham.	“Pamela:	A	Proto-Pattern	for	Rapidly	Delivered,	Runtime	Extensible	
Systems.”	Evaluation	of	Modelling	Methods	in	Systems	Analysis	and	Design	(EMMSAD)	
(2001)	available	here

PresentaEons

Software	Visualization,	Tudor	Girba

Videos

Agile	Visualisation	in	Mondrian
Software	Environmentalism
Introduction	to	Domain	SpeciDic	Modelling
20	Domain	SpeciDic	Modelling	Examples

Websites

http://www.inspired.org
http://www.moosetechnology.org
http://www.metacase.com

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.197.7172&rep=rep1&type=pdf
https://www.slideshare.net/girba/software-visualization-evo-2008-presentation
https://sanlam.evasaas.com/Archi/Documents/D3431x48148x3448xMondrian%20Agile%20Visualization.mp4
https://sanlam.evasaas.com/Archi/Documents/D3431x48141x3448xTudor%20Girba%20-%20Software%20environmentalism.mp4
https://sanlam.evasaas.com/Archi/Documents/D3431x48147x3448xIntroduction%20To%20Domain-Specific%20Modeling.mp4
https://sanlam.evasaas.com/Archi/Documents/D3431x48143x3448x20%20Examples%20on%20Domain-Specific%20Modeling.mp4
http://www.inspired.org
http://www.moosetechnology.org
http://www.metacase.com

	
	Abstract
	Agility is a Business Requirement
	Defining Agility
	Figure 1 - 	Dimensions of Change to Achieve Business Agility

	Agile Methods (Doing things faster)
	Figure 2 - 	Agile Manifesto
	Figure 3 - 	Typical Agile Lifecycle Source: Scrum Alliance

	Dangers of “Agile”
	Achieving Agility in Software Solutions
	Figure 4 - 	Typical “Waterfall” Lifecycle	
	Figure 5 - 	Contrasting Waterfall and Agile Lifecycles PMO = Project Management Office

	Delivering More Rapidly
	Figure 6 - 	Traditional Waterfall Lifecycle
	Figure 7 - 	Iterative Incremental Lifecycle
	Figure 8 - 	Agile Lifecycle
	Figure 9 - 	DevOps Lifecycle

	Leveraging Prior Effort (Doing less things)
	Figure 10 - 	Part of an old stone built foundry in Moratac Park, North Carolina 
	Use Component Libraries and Frameworks
	Figure 11 - 	Rapid Construction with Pre-Built Components Source: https://i.pinimg.com
	Figure 12 - 	Prefabricated Structure delivered to site

	Use Reference Models and Patterns
	Figure 13 - 	A hospital architecture blueprint, or pattern Source: www.hhbc.in
	Figure 14 - 	Frameworx from the Telemanagement Forum  provides generic models for Telcos

	Generate Detail
	Figure 15 - 	3D Printed House Source: https://all3dp.com

	Domain Specific Modeling and Generation
	Figure 16 - 	Domain Specific Modeling Activities Source: MetaCase
	Figure 17 - 	DSM language and generator development does incur an overhead,  but it can be small. Source: MetaCase
	Figure 18 - 	DSM development may be recouped, even in an initial project Source: MetaCase
	Figure 19 - 	DSM Projects vs Conventional Development Source: MetaCase

	Reuse and Ensure Adaptability
	Do Less Things Ourselves
	Make more Flexible Things
	Figure 20 - 	Cape Town International Convention Centre - A configurable facility Source: CTICC

	Runtime Adaptable Systems
	Figure 21 - 	Relative Productivity of Different Languages Source: Software Productivity Research
	Figure 22 - 	EVA Netmodeler Architecture Source: inspired.org
	Figure 23 - 	Relative Flexibility and Productivity of Technologies

	Agility and Legacy
	Figure 24 - 	Software visualization with Moose tools

	Harvest, ReModel, Forward Generate
	Figure 25 - 	Code Harvesting and Forward Generation with DSM

	The Lists
	Figure 26 - 	Factors affecting agility

	Promoting Organizational Agility
	References and Further Reading
	Papers
	Presentations
	Videos
	Websites

