
Managing Information
Technology Projects

Graham McLeod

Derek Smith

University of Cape Town

©2001

DEDICATION

To myfamily
Graham McLeod

To my late brother, David, an inspiration and a mentor
Derek Smith

PRODUCTION

Executive Editor: James H. Edwards

Project Manager: Lisa S. Strite

Production Editor: Barbara Worth

Manufacturing Coordinator: Lisa Flanagan

Marketing Director: William Lisowski

Illustrator: Suzanne Biron

All of Boyd and Fraser International

RIGHTS

All rights reserved. Copyright under the Berne convention. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photographic, recording or
otherwise, or be used to make a derivative work (such as translation, adaptation
or courseware) without prior permission in writing from the authors.

This edition printed in South Africa by Inspired Press, POBox 384, Howard
Place, 7450. Telephone +27 21 531 5404. Facsimile +27 21 531 8503.
www.inspired.org.

ISBN 0-620-27421-2

Contents
Table of Figures
Preface

1 • The Nature of Projects
2· Project Initiation
3· The Work
4· The Product
5· Resources
6. The Project Lifecycle
7. &timating
8· Project Design
9· Planning Techniques

10. Project Management Tools
11 • Project Execution
12· Measurement
13· Reporting
14· Change and Configuration Management
15· Quality Management
16. Project Documentation
17. Communication
18· Managing People
19. Implementation
20. Multiple Project Coordination
21 • Subcontractors.
22· Program Management

Introduction to Case Studies
Glossary of Terms
Bibliography
Index

Brief Contents

v
xv
xxi

1
17
39
51
61
73
79

115
151
173
189
197
219
229
241
267
279
291
327
333
339
345

353
363
373
381

Brief Contents iii

Contents

Table of Figures xv

Preface
Intended Audience xxi
Aims of the Text xxi
Approach Taken xxii
Language and Standards xxii
Case Studies xxii
Additional Materials xxiii
Project Management Software xxiii
Acknowledgments xxiii
Production Notes xxiii
Contact Address xxiv

1 • The Nature of Projects
Projects Are Not Routine 1
Definition of a Project 1
Attributes of a Project 1
Brief History of Project Management 2
Some Famous Projects 2
Project versus Ordinary Management 3
Project Risk 4
Project Management Fundamentals 4
Variables in Tension 5
Types of 1.S. Projects 5
Are 1.S. Projects Different? 7
Is Anything the Same? 7
Project Manager 7
Responsibilities 8
The Big Picture 9
Project Phases 11
Strategic Fit 11
Distribution of Effort 11

Contents v

Project Life Cycle

2· Project Initiation
Introduction
Project Definition
Project Feasibility
Feasibility Report
Project Justification
Plan and Design
Scope of Project
Context Diagram
Technical Environment
Product Breakdown Model (PBM)
Standards, Techniques, Methods
Determining Tasks to Perform
Determining Skills Required
Estimating Durations
Work Breakdown Structure (WBS)
Determining Dependencies
A Definition of Success
Case Questions

3· The Work
Tasks
Source of Tasks
Work Breakdown Models (WBM)
Task Definition
Phases
Manageable Unit of Work
Case Questions

4 • The Product
Deliverables
Products
Product Structure Model
Relationship to Tasks
Case Questions

5· Resources
People
Infrastructure
Tools
Standards

vi Managing Information Technology Projects

12

17
17
20
22
24
24
25
25
27
29
31
31
33
33
34
34
34
36

39
39
40
42
46
46
48

51
55
56
57
58

61
61
62
62

Resource Requirements 62
Resource Profiles 62
Organization Model 67
Relationship to Work Model and Product Model 67
Task Assignment 67
The Role of a Mentor 68
Case Questions 69

6· The Project Lifecycle
PLC Versus SDLC 73
Generic Lifecycle 74
Discussion of the Lifecycle 75
Case Questions 77

7· Estimating
Project Success 79
An Analogy 80
Estimating Dilemma 81
An Estimate Is 82
Certainty versus Project Stage 83
Factors Affecting Effort and Duration 85
Techniques for Estimating 89
Determining the Size of the Job 89
Lines Of Code 90
BANG 90
Function Points 91
Ca1culating Function Points 92
Other Techniques 94
Wideband Delphi Technique 94
Work Breakdown Structure (WBS) 95
Management Overhead 96
Qua1ity Assurance 97
Converting to Calendar Time 97
Ana10gy and Experience 97
Ana1ytica1 Models 97
Empirical Models 98
Additional Factors 102
Estimating PrinCiples 105
Applicability of Techniques versus Phase 108
Putting It All Together 108
Case Questions 111

8· Project Design
Lifecycle Choice 115
Waterfa11 Model 116
Systems Engineering Lifecycle 118

Contents vii

Overlapping Phases
Prototyping
Joint Application Development (JAD)
Iterative Lifecycle
Phased Delivery
Timebox
Spiral
The Simulation Approach
System Maintenance
Technology Implementation
Package Implementation
Consistent Management Approach
Methods, Techniques and Standards
Documentation
Project Resource Requirements
Project Team Structure
Chief Programmer Team
Egoless (Democratic) Programming Team
Participative Management
Multidisciplinary Teams
Selection of Team
Relationship to Organization
Sponsor
The Steering Group
Reporting Structures
Quality Assurance
Project Partitioning
Risk Control
Summary
McFarlan Risk Questionnaire
Case Questions

9· Planning Techniques
Introduction
Gantt and Milestone Charts
Network Techniques
Ladders, Leads and Lags
Deadly Embraces
Optional Dependencies
Showing Summary and Subtasks
Assigning Resources
Analyzing the Network
Total Project Duration (Calendar Time)
Critical Path Analysis (CPM)
Program Evaluation and Review Technique (PERT)
Risk
Tracking Progress
Summary
Case Questions

viii Managing Information Technology Projects

119
120
123
124
124
126
126
126
128
128
128
129
129
130
130
131
131
132
133
134
134
135
135
136
136
136
137
139
142
143
149

151
152
154
156
156
157
157
159
159
160
162
163
166
166
167
169

10· Project Management Tools
Facilities
Repository
Calendars
Task Definition
Dependencies
Work Breakdown
Resource Definition
Resource Loading
Scheduling
What If?
Reporting
Standards Within the Organization
Costs and Overheads
Product Definition
Version Control
Selecting a Package
Future of PM Packages
Case Questions

11 • Project Execution
Microscheduling
Obtaining Resources
Monitoring Parallel Projects
Executing Tasks
Checking Quality
Assessing Progress
Project Meetings
Walking About
Crises of Realization
Abandonment
Case Questions

12· Measurement
Why Measure?
What Should We Measure?
Limitations
Measuring Progress
Value of Work Complete
The Binary Deliverable
Timesheets
Budget
Staff Turnover
Productivity
Requirements Change

173
174
175
176
176
178
178
179
180
180
181
181
181
182
182
182
184
185

189
190
191
191
191
192
192
192
193
193
195

197
199
201
201
202
202
203
205
205
206
206

Contents ix

Quality
Reusability
Integrating the Measures
Statistical Process Control
Organizational Issues
Introducing a Metrics Program
Self Monitoring
Allowing Mistakes
Commercial Products
Summary
Case Questions

13· Reporting
Accuracy and Consistency
Frequency
Format
Example
Case Questions

14· Change and Configuration Management
Project Scope Control
Configuration Management
Concessions and Deviations
Estimating the Impact of Change
Change Control
Case Questions

15· Quality Management
Definition
Measuring Quality
So Why Worry?
Quality Management
Quality Environment
Quality Assurance
Quality Control
Total Quality Costs
Two Philosophies
A Quality Scenario
A Quality Model
Innovation versus Kaizen
Quality Improvement
Bugs or Defects?
Start Testing Early
Adversary Teams
Myers's Findings
Monitoring Defect Removal

x Managing Information Technology Projects

206
207
209
210
211
214
214
215
215
215
216

219
221
221
222
227

229
230
232
233
234
240

241
242
243
246
246
247
248
248
249
249
251
253
254
255
256
256
257
258

Problem Incidence as Reliability Indicator 259
The Productivity Link 260
Reusability 260
Case Questions 263

16· Project Documentation
The Need for Documentation 267
The Traditional Trap 267
Painless Documentation 267
Documentation Principles 270
Martin-Mcclure-Odell Notations 272
Meetings, Decisions and Minutes 272
PBM of Documentation 272
Summary 276
Case Questions 277

17· Communication
Introduction 279
Communication Styles 280
Interviewing 280
Negotiating and Influencing 281
Presentations 282
Meetings 282
Joint Application Development 283
Session Preparation 285
Running the Session 285
Team Building 287
Case Questions 288

18. Managing People
Introduction 291
Job Design 292
Staff Selection 294
Interviewing New Recruits 296
Employment Testing 298
Aptitude Tests 298
Achievement Tests 299
Psychometric Tests 299
Afftrmative Action Programs 301
Interview or Audition? 302
Setting Objectives 303
Types of Objectives 304
Criteria for Objective Setting 304
Developing Action Plans 305
Performance Appraisal 305
Importance of Performance Appraisals 305

Contents xi

The Performance Appraisal System
Comparative Approach
Absolute Standards
Management By Objectives
Direct Index
The Context of Performance Appraisal
The Appraisal Process
Feedback of Performance Results
Matching the Purpose and Method
Ineffective Performance
Staff Motivation
Supplying the Motivators
Motivating 1.S. Personnel
Team Selection and Productivity
Personality Difference in Teams
Team Size
Career Development
Career Effectiveness
Career Stages
1.S. Careers
Leadership
Case Questions

19. Implementation
Preparing for Implementation
Implementation Problems
Case Questions

20· Multiple Project Coordination
Integrating Plans
Eliminating Bottlenecks
Boundary Management
The Role of Reviews
Sharing Resources
Consistency of Methodology
Mixed Messages
Stay Business Focused

21 • Subcontractors
Using Subcontractors
When to Use Subcontractors
How to Choose Subcontractors
The Tendering and Negotiation Process
Negotiating
Contracts
Managing Subcontractors

xii Managing Information Technology Projects

307
307
307
308
308
308
309
310
310
311
311
314
314
316
318
318
319
320
320
320
321
324

327
329
331

333
333
335
336
336
336
337
337

339
339
339
340
343
343
343

22· Program Management
The Very Large Project
Tight Deadlines
The Role of Architecture
Responsibilities
Interfaces
Breaking Up the Work
Role of Abstraction
Simulation
Managing the Process and Delivery
Logistics
Summary

Introduction to Case Studies
Background
The Myway Organizer
Gleam Stores
Handover Trust
Thoughtwell Books

Glossary of Terms
Bibliography
Index

345
345
346
346
347
349
350
350
350
351
352

353
354
356
358
360

363

373

381

Contents xiii

Figure Title
No.

1.1 Cathedrals of Europe
1.2 Project vs Ordinary Management
1.3 Project Variables in Tension
1.4 The Big Picture
1.5 Project Phases
1.6 Strategic Fit
1.7 Management Structure
1.8 Project Lifecycle
1.9 Project Lifecycle as Bar Chart

2.1 Project Lifecycle
2.2 Project Definition
2.3 Project Lifecycle
2.4 Feasibility Report
2.5 Project Lifecycle
2.6 Context Diagram
2.7 Context Diagram Example
2.8 Technical Environment Model
2.9 Technical Environment Model Example
2.10 Product Breakdown
2.11 Determining Tasks to Perform
2.12 Determining Skills Required
2.13 Estimating Durations
2.14 Determining Dependencies

3.1 Work Breakdown Structure
3.2 Work Breakdown Model
3.3 Configuration Management - WBM

4.1 Sample Banking ERD
4.2 Product Structure Model
4.3 WBM to PSM Relationship

Table of
Figures

Page No.

2
4
6

10
12
13
13
14
16

17
19
21
23
24
26
27
29
30
30
32
33
34
35

41
43
46

54
55
56

Table of Figures XV

5.1 Resource Histogram 63

6.1 Project Lifecycle 74

7.1 Project Lifecycle 79
7.2 Estimating Dilemma 81
7.3 Estimating - a Better Scenario 82
7.4 Improvements in Software Productivity Due to Technology 83
7.5 An Estimate Is ... 84
7.6 Certainty versus Project Stage 84
7.7 Change in Effort versus Turnover 86
7.8 Effect of Team Size 87
7.9 Function Point Calculation 93
7.10 Wideband Delphi Technique 95
7.11 Estimating Durations 96
7.12 Norden-Putnam Curve 99
7.13 Project Cost versus Time 100
7.14 The Impossible Region 101
7.15 Parr Curve 102
7.16 The Creeping Window 107
7.17 Estimating Quality Factor 108
7.18 Applicability of Techniques versus Phase 109
7.19 The Estimating Engine 110

8.1 Project Lifecycle 115
8.2 Waterfall Model 116
8.3 Relative Costs of Lifecycle Phases 117
8.4 Effort on Correction of Errors 117
8.5 Relative Cost to Correct an Error 118
8.6 Software Engineering Lifecycle 119
8.7 Overlapping Phases 120
8.8 Prototyping as a Replacement for Functional Specifications 121
8.9 Prototyping Used to Refine Specifications 122
8.10 Prototyping Lifecycle 122
8.11 J AD in the SOLC 123
8.12 Phased Delivery 125
8.13 Simulation Approach Using 00 127
8.14 Alternative Lifecycles 129
8.15 Resource Histogram 131
8.16 Resource Input Contract 132
8.17 Structure of Team 133
8.18 Classical Structures 134
8.19 Project Failure versus Size 138
8.20 Overlapping Functionality 140
8.21 Risk Assessment 141

9.1 Project Lifecycle 151
9.2 Work Breakdown Structure 152
9.3 Gantt Chart with Milestones 153
9.4 Task on Line Notation 154
9.5 Scaled Network Diagram 155

xvi Managing Information Technology Projects

9.6 Precedence Diagram 155
9.7 Ladders, Leads and Lags 156
9.8 Controlled Iterations 157
9.9 Optional Dependencies 158
9.10 A Hammock (Summary) Task 159
9.11 Subproject with Interface Events 160
9.12 Gantt Chart with Resources 161
9.13 Gozinto Chart 161
9.14 Critical Path Method 163
9.15 Multiple Critical Paths 164
9.16 PERT Structure 165
9.17 Gantt Chart with Actuals 167
9.18 Slip Chart 168

10.1 Project Management Tool 175
10.2 Network Diagram Example 177
10.3 Determining Dependencies 178
10.4 Resource Leveling 179

11.1 Project Lifecycle 189
11.2 Crises of Realization 193

12.1 Project Lifecycle 197
12.2 Humphrey's Five Levels of Maturity 198
12.3 The Systems Factory 199
12.4 Measuring Productivity 200
12.5 Recording Actuals on WBS 202
12.6 Calculating Value of Work Complete 203
12.7 A Sample Time Sheet 204
12.8 Measuring Quality 207
12.9 Value Added Performance 209
12.10 Statistical Process Control 210
12.11 Flow 213

13.1 Project Lifecycle 219
13.2 Alternative Lifecycles 220
13.3 PROD Progress Report 223
13.4 PROD Status Report 224
13.5 Summary Project Plan 225
13.6 PROD Problems and Issues 226

14.1 An Expanding Balloon 230
14.2 Configuration Management 231
14.3 Product Structure Model 233
14.4 Change Request Form 235
14.5 Change Request Tracking Form 236
14.6 Change Control 1 237
14.7 Change Control 2 238
14.8 Change Control 3 238
14.9 Change Control 4 239

15.1 Software Spoilage 244

Table of Figures xvii

15.2 Ability to Deliver New Functionality 245
15.3 Turning Productivity Around 245
15.4 Quality Team Effort 246
15.5 Quality - Appraisal Philosophy 249
15.6 Quality - Prevention Philosophy 250
15.7 Quality Model 251
15.8 Quality Model for File Design 252
15.9 Differences Between Developers 256
15.10 Adversary Teams 257
15.11 Myers's Findings 258
15.12 Monitoring Defect Removal 258
15.13 Problem Incidence as Reliability Indicator 259
15.14 Quality Improvement at Hitachi 260
15.15 Process Improvement Results 261

16.1 A Typical CASE Tool 268
16.2 Scaling of Images 269

17.1 Project Lifecycle 279
17.2 JAD Participants 285
17.3 JAD Process 286

18.1 People Management Process 292
18.2 Job Analysis 293
18.3 Typical Job Description 294
18.4 Typical Job Specification Sample 295
18.5 Changing Skill Requirements 299
18.6 Myers-Briggs Behavioural Dimensions 300
18.7 Myers-Briggs Type Indicator (Sample Questions) 301
18.8 Distribution of Myers-Briggs Personality Types 302
18.9 Performance Appraisal System 306
18.10 Maslow's Hierarchy of Needs 312
18.11 Motivating Potential of Job 315
18.12 Team Formation 319
18.13 Situational Leadershi p 322

19.1 Implementation Strategies 328
19.2 Phased Approach 329

20.1 Multiple Project Coordination 334
20.2 Managing Scope via Boundaries 335

21.1 Request for Proposal 340
21.2 Factors and Weightings 341
21.3 Product or Service Rankings 342
21.4 Final Scores 342

22.1 Levels of Abstraction in Architecture 349
22.2 Architecture for an Order Processing System 351

xviii Managing Information Technology Projects

Tables

7.1 Source Statements per Function Point
7.2 Productivity Indices by Project Type

12.1 Coding War Environment

88
103
212

Table of Figures xix

Preface

Intended Audience
This book is intended for use by Information Systems (I.S.) and Information Technology
(LT.) project managers in industry and as a text for final year and honors students in LS. at
universities, colleges and technikons. It is assumed that the reader has a fairly thorough
knowledge of the system development process and the general I.S.fI.T. environment.

Aims of the Text
There are many texts on project management. There are even more on system development,
but very few on 1.S. project management. There are even fewer on managing the non­
development Information Technology (LT.) project - maintenance, hardware installation,
package installation, etc. This text is intended to provide a body of knowledge to support L T.
project managers in the challenge of managing all aspects of a variety of project types.

The aim of the book is to equip the reader with the necessary knowledge (and with practice,
the sk1lls) to successfully initiate, plan, manage, control and report on LT. projects. Ancil­
lary aims are to convey the importance of proper planning, documentation, scope and
change control, and quality and risk management.

The book also covers the people skills required in the areas of team selection, structure,
motivation, interviewing, presentations, conflict resolution and leadership. The use of
automated software tools in support of project management will be introduced, although no
particular package is required or assumed. The text does not assume any particular type of
project. The techniques presented are applicable to a wide variety of projects, including:

• Systems development

Package implementation

• End User Computing (EUC) development

Hardware and software installation

• Major maintenance and enhancements

Preface xxi

• Strategic planning

• System conversion

• Business Process Reengineering CBPR)

Most examples quoted will be for a systems development project.

Approach Taken
The text is primarily intended to provide a practical approach which will be easily applied in
practice. Care has been taken to ensure that this is based upon a sound academic, empirical
and theoretical base. The authors have drawn on their combined 45 years of experience in
the industry to identify the issues which are really important, and to balance the amount of
coverage given to each area.

Language and Standards
We have striven wherever possible to be nonsexist. When we quote examples, we have used
"he" or "she" depending upon the gender of the people actually involved. Elsewhere in the
text, we have used the word "he". This is not to imply that all or most project managers are
male, but rather to have text that reads easily. Please treat all of these as "genderless" uses of
the word, and mentally substitute "she" or whatever you are most comfortable with.

Where examples and explanations use currency, we have chosen to use the generic "dollars"
or "$". The actual units involved may have been in another currency, e.g. Rands or Pounds.
This has been done in the interests of international portability, since virtually everyone can
relate to amounts in dollars. You can assume that amounts quoted have been converted to
U.S. dollars.

LT. constantly introduces new terminology and "buzz words". These help to convey
information quickly to the informed, but can be extremely confusing to others. LT. is
particularly rich in acronyms. In all cases, we introduce the term fully the first time it is used
in the text, followed by the abbreviation used thereafter. For example, "This is called a Work
Breakdown Structure (WBS)". Abbreviations can also be looked up in the Glossary at the
end of the book.

Case Studies
We have included four rich case studies as an aid to learning and illustrating the real world
application of the principles and techniques in the book. Questions relevant to the material in
each chapter follow the individual chapters. The cases are introduced in the next section.

Additional Materials
An instructor package is available to teaching institutions from the publisher. This includes
an instructor guide, transparency masters and a data disk in support of case questions and
software exercises.

xxii Managing Information Technology Projects

Project Management Software
It is not essential to have access to a package, but it can certainly enhance the learning
process, particularly in those chapters dealing with project management techniques, tools
and reporting.

Acknowledgments
We would like to acknowledge the contribution of many sources and participants:

Authors: Tom de Marco, Francois Lustman, Tom Gilb, Philip Metzger, Comcon (Piet
Opperman), Norden & Putnam, The Butler Cox (now CSC Index) P>E>P Programme, and
various Insti tute of Electrical and Electronics Engineers (IEEE) authors.

Students: Of the University of Cape Town, Faculty Training Institute and Inspired, who
endured and enriched earlier versions and components of the text.

Colleagues: who encouraged, critiqued and cajoled to produce a better result.

Our reviewers appointed by our publisher, boyd & fraser, who provided many valuable
comments and exhorted us to undertake the great labor of cases and an instructor guide.

Our Families: Liz, Simon, Rachel and Daniel Smith and Hilary, Matthew and Zoe McLeod,
who put up with us and the late nights.

Jim Edwards III, Executive Editor at boyd & fraser, who provided overall guidance. Lisa
Strite and Barbara Worth of boyd & fraser, who managed the production process.

We have sought to obtain permissions wherever possible. In the event that any materials
have been overlooked, we apologize and ask that originators contact the publisher so that
proper acknowledgment can be made in future editions.

Production Notes
The text for this edition (and complete prior editions) was entirely produced in electronic
form by the authors using the Desk Top Publishing (DTP) package Pagestream 2.2 on a
Commodore Amiga 4000 computer. Output was to a Postscript Hewlett Packard laser
printer. Line art was partly produced by the authors, and partly by boyd & fraser artists. The
latter was produced in Aldus Draw using Apple Macintosh equipment, and output to a 1270
dpi image setter.

Contact Address
For comments and suggestions, the authors can be contacted at: Department of Information
Systems, University of Cape Town, Private Bag, Rondebosch, 7700, Republic of South
Africa. Telephone +27216502261, Facsimile +27 21 6504085. You are also welcome to
send e-mail tograham@infosys.uct.ac.zaorderek@infosys.uct.ac.za.

Preface xxiii

1
Projects are not Routine

The Nature
of Projects

Why have a project? To get something done! If we have a situation that we are happy with,
and which does not need to change, then we don't need a project. Projects are mounted to
achieve some change. This could be the installation of a new hardware configuration, the
development of a custom-written software system, or the country-wide installation of an
application package, with the associated procedural changes in the business operation.

Definition of a Project
A project is a coordinated effort, using a combination of human, technical, administrative
and financial resources, in order to achieve a specific goal within a fixed time period.

Attributes of a Project
Attributes of a project include:

• It has a goal

It has a start and ajinish

• It requires resources, including
People
Money
Tools and equipment
Administration

• It requires coordination

• It is a temporary structure

• It is mounted to achieve change

Chapter 1 The Nature of Projects 1

Brief History of Project Management
There have been projects since man (as a species, including women) attempted to do more
than a single person could accomplish alone. Examples that come to mind include: the
pyramids, the Great Wall of China, the cathedrals of Europe, the Roman roads. All of these
required a major concerted and coordinated effort involving many people over an extended
period of time.

Project management as a discipline, however, is relatively recent. This came about primarily
as a result of the Second World War, where the Allied powers (England, U.S.A., etc.) had to
respond to the Axis (Germany, Japan, etc.) challenge in the minimum time possible. The
stakes were very high - essentially Western civilization as we know it.As a result, the best
intellects available were applied to the problems with a very high level of motivation. This
resulted in a revolution in the discipline and the creation of many of the techniques which
we now use, including Critical Path Method (CPM) and Project Evaluation and Review
Technique (PERT).

St Peter's at Rome is unequalled in magnitude
and splendor by any other Christian church in
the world. It was begun in 1506, and was conse­
crated in 1626.

The Duomo, Florence, was begun in 1296 and
was finished in 1462. The cathedral at Cologne
was begun in the middle of the 13th century and
only partly finished in 1509, after which work
was not resumed on it until 1830. In 1863 the in­
terior was thrown open to the public. In 1880 it
was finished.

- Universal World Reference Encyclopedia

Cathedrals of Europe

Some Famous Projects

Figure 1,1

The Manhattan Project was the project to develop the atomic bomb. It was a collaborative
effort among American, British and Canadian physicists, mathematicians, and technicians
and ran over some four years.

The OS/360 Project produced the operating system for the first fully compatible range of
commercial computers, the IBM 360 series, This was the largest software project ever
undertaken at that time, and at the peak employed some 2000 software developers. Fred
Brooks, author of "The Mythical Man Month" was a manager on the project. The project ran
into major problems, but eventually produced a working operating system, which evolved
into OS (Operating System) and finally MVS (Multiple Virtual System).

2 Managing Information Technology Projects

The ApoUo Project was the project at the National Aeronautics and Space Administration
(NASA) in the United States which placed a man on the moon. This was a national
commitment, involving a goal set by John F. Kennedy, and a budget in the billions of
dollars. It was also one of the early multi-disciplinary projects involving materials science,
rocketry, physics, medicine, electronics, computer science, manufacturing, weather science,
and radio telemetry. It was largely due to naval military requirements and the space
program that the miniaturization of electronics began, resulting in integrated circuits and the
cheap computing power that we have today.

Ultra was a major project undertaken at Bletchley Park in the United IGngdom to break the
German machine-encoded ciphers used for secret transmissions during the Second World
War. It involved the genius of Alan Turing, whom many remember as the inventor of the
Turing Machine, a theoretical sequential computer operating off an instruction tape. The
project involved developing hardware and computing algorithms to break the ciphers in
response to every improvement the Germans made in their technology.

All of the above projects contributed valuable lessons and techniques in the areas of project
management. The discipline has now become more formalized, and college-level courses are
widely available. Project management is widely used in engineering and civil engineering,
Buildings that previously would have taken many years to complete are now routinely
finished in a matter of twelve to eighteen months,

In LT. projects, there are still a number of unique problems, related mainly to the unclear
nature of our objectives. It is very uncommon at the start of a systems project to know
exactly what the required system should look like. In this respect, systems projects are much
more like research projects. Fortunately, techniques are now evolving to help control these
"fuzzy" projects. We will be exploring some of these in the text.

Project versus Ordinary Management
Management is the process of planning, organizing, leading and controlling the efforts of
organizational members and the use of other organizational resources in order to achieve
stated organizational goals [Bergen, 1986]. It is characterized by a cycle of "Direct, Measure
and Control". Directing involves conveying goals, objectives, performance standards and
responsibilities to staff. Measurement involves monitOring progress, work results and
quality. Control involves applying the necessary changes to priorities, standards, work
assignments and allocation of corporate resources to ensure that the goals of the organization
are achieved.

In addition to the above, project management also includes the aspects of Initiation and
Termination (figure 1.2). Initiation i.nvolves defining the Goals and Objectives, setting the
scope of the task, determining financial and technical feasibility, designing the process to
achieve the objectives, and selecting and building a team. Termination involves delivering
the work results to the organization (frequently involving complex implementation, training
and adaptation), planning the transition of resources to new assignments, and capturing
learning which has taken place in the project for use on subsequent projects.

Like line management, project managers share a responsibility for staff motivation and
development during their assignment to the project. In many ways the job of a project
manager resembles that of an entrepreneur who has to develop an organization from scratch.

Chapter 1 The Nature of Projects 3

Initiate

Terminate

ORDINARY MANAGEMENT PROJECT MANAGEMENT

Project vs. Ordinary Management Figure 1.2

Project Risk
Unfortunately, LS. project management is a risky business. Recent figures indicate that very
few LS. projects meet all their objectives. Lodge [1987] in a study among organizations
participating in the CSC Index Productivity Enhancement Programme (P>E>P) indicated
that, even in these superior organizations, as many as 10 percent of development projects
exceeded time and budget estimates by more than one 100 percent. Kerzner [1989] discusses
the failure of projects to meet quality requirements. Willbern [1989] and Bentley el al.
[1991J have identified the phenomenon of "runaway" projects. They say that 30-35% ofl.S.
projects launched in some 600 companies were "runaways" - so badly out of control that
there was no chance of meeting organizational objectives. Ewusi-Mensah and co-authors
[1991J describe how many I.S. projects are abandoned, usually at late stages when most of
the expenditure has already been incurred. More typically, many 1S. projects deliver the
desired result, but very late and way over budget. We will be looking at these problems, their
extent, and teclmiques to minimize them in Chapters 8 and 14.

Project Management Fundamentals
The Project Management Institute (PMI), a U.S.-based organization administering formal
Project Management qualifications, identified the following project management fundamen­
tals:

4 ManagIng Information Technology Projects

There is nothing more difficult to plan, more doubtful of success,
nor more dangerous to manage than the creation of a new system.
For the initiator has the enmity of all who would profit by the preser­
vation of the old system, and merely lukewarm defenders in those
who would gain by the new one.

Count Machiavelli - 1513 AD

• Scope - what is and what is not included. Where are the boundaries?

Time and deadlines. Time is our one irreplaceable resource. Deadlines are dates by
which a particular task or product must be complete

Human resources. These are the people who will participate in the project. In I.S.
projects, they are often our scarcest and most expensive resource

Quality. Quality of the work done and the products produced is fundamental to
achieving the project objectives. It is also vital to achieving productivity

Communications. The project (and the project manager as its chief spokesperson),
resides at the center of a web of communications. It is also essential that
communication within the project team is effective

Risk. Risk of failure in terms of reqUirements, budget and deadlines is ever present

These topics will all be dealt with in the text.

Variables in Tension
The project manager will always be balancing three critical variables: Quality, Cost and
Time (figure 1.3). These three are connected as if by the sides of a triangle. It is impossible
to move one without affecting at least one of the others. If I want higher quality, it will either
take longer, or cost more, or both. If I want to reduce the cost, without sacrificing quality, I
will need to allow more time. It is very important to remember these relationships when
pressure is brought to bear during project execution. The variables and their respective
priorities should also be discussed with management at the outset.

Types of I.S. Projects
An I.T. project manager can be called upon to manage a wide variety of project types,
including:

• System development. A custom-written system is developed from scratch

Package implementation. A pre-written application package is implemented,
possibly with modifications

Chapter 1 The Nature of Projects 5

Project Variables in Tension Figure 1.3

• End User Computing where the target users of the system participate significantly in
its development. This is common for Decision Support (DSS) or modeling systems

• Prototyping which can be used where unknown technology is to be used, or where
requirements are unclear

Rapid Application Development (RAD). Techniques are used to compress the
lifecycle. These may include Joint Application Development (JAD), use of
Computer Aided Software Engineering (CASE) and timebox methodologies. In the
latter, the deadline is fixed, and the scope of the work tackled is scaled to allow the
deadline to be achieved

• Systems Architecture projects which are used to define the strategic systems plan for
an organization. A plan is derived from the business strategy and includes the set of
systems which will be implemented by the organization over the planning time
frame, normally five years

• Selection Projects where application packages or technology are selected to meet the
business requirements

• Projects involving an iterative lijecycle, where tasks are performed repetitively to
approach a goal more exactly. Common for RAD, prototyping and Object Oriented
projects

Business Re-engineering (BPR) Projects, which seek new ways of handling business
processes to enhance effectiveness

• Technology Implementation Projects such as the installation of a network or e-mail
system

• Component Assembly Projects, typically advocated in Object Oriented (00)
environments. Systems are built from predefined components bought in Class
Libraries and "snapped together" with a minimal amount of custom coding and
modification to form completed applications

6 Managing Information Technology Projects

Are loS. Projects Different?
It is often argued that conventional project management techniques cannot be used in I.S.,
because our projects are different Different in what way? In a construction project, it is easy
to visualize the finished product in terms of the architect's design - there are well-tried
formulae and techniques for determining the materials, sizes and strengths required, and
there are established ways of performing the estimating, using stable norms for productivity
of various resources. For example, we know how many bricks a bricklayer can be expected
to lay in a day. 1.S. practitioners claim that our objectives are fuzzy, that they change during
construction, that we do not have the norms for calculating requirements, and that we cannot
estimate accurately, because the range of productivity levels is vastly different across our
resources.

There is some validity in this view, but we contend that the required information will never
be available unless we apply some rigor to the process, collect some statistics, and start to
build the database, models and norms that we require. This has already started to happen.
The typical practitioner may be unaware of the techniques and tools available, because they
are recent and derived from many sources. We hope that this text will persuade you that
project management principles, some from conventional approaches and some from research
methodology, can be applied, and that software projects will one day achieve the same level
of professionalism as other construction and engineering endeavors. Bear in mind that the
engineers and construction industry have a history of several thousand years, while software
projects date back only to the late 1940s. .

The management of LS. staff does have some unique challenges and opportunities. I.S. staff
do exhibit personality profiles that are relatively different from the population at large. We
will be looking at this later under the topic of People Management.

Is Anything the Same?
Yes, many things are the same. There are a variety of techniques we can borrow from other
types of project management, particularly high-tech engineering and research projects. Like
all projects, success is heavily dependent upon the skills of the project manager.

Project Manager
What do you need to be a good project manager? Among other attributes you should be (or
develop yourself to be):

A communicator to handle the heavy load of person-to-person communications
within the team and with external parties, including management, the project
sponsor, contractors, support groups and others

A manager to concentrate on the business goals, carry out the activities of directing,
measuring, and controlling while motivating staff and developing them while
keeping an eye on quality and risk

• An innovator, since you will face unique problems requiring innovative solutions

Technically competent, respected. and aware. In managing technical people, it is
essential that staff respect your judgment, or you will lose their support. If you ask

Chapter 1 The Nature of Projects 7

them to do things which they know are not possible, you will quickly lose their
respect It is not necessary to be a star technician, but you must at least have a
thorough appreciation of the issues at hand, and the feasibility of your requests. If
you lack technical skills, draft these into the team, or ask team members to brief you
thoroughly before taking decisions

An Administrator. As we have seen, there will be a significant component of
administration to keep track of project schedules, resources, deadlines, deliverables,
and budgets. If you are not a good administrator, find one and delegate this activity.
Using a personal computer (PC) and the right software packages can help a lot

• A Leader. You will need to persuade the team, management, the sponsor and support
groups to share your objectives, and participate willingly to help you reach them

• Able to work well under pressure. Projects are tough. You need to remain calm, keep
focused, and not lose sight of objectives, while remaining sensitive to the people,
organizational and political factors

• Goal-oriented, but not to the exclusion of the human issues

• Knowledgeable about the company so that you can keep the project aligned with
corporate direction and objectives

• Senior. Project managers carry significant responsibilities with respect to corporate
resources and finances, as well as the impact that projects have on the organization.
Consequently, you need the appropriate authority to get the job done, and seniority to
ensure that concerns are heard at the right levels

Responsibilities
The project manager typically has the following responsibilities:

•

•

•

•

•

8

Reporting to Senior Management and the Steering Committee. The project manager
represents the needs of the project, requests resources, conveys progress and
problems to management

Communication with Users to ensure that the project is achieving their requirements.
This involves senior users, such as the sponsor (who is funding the project) as well as
operational users, such as terminal operators, who will have to use the completed
application. Other "users" include facilities (who will operate a mainframe system),
and the group who will maintain the system in production. Each group may have
different requirements that must be satisfied

Planning and Scheduling. Deciding upon the best approach to the project. Setting up
the goal and objectives, determining feasibility, estimating time and cost, determin­
ing resources required and scheduling the activities

Obtaining and allocating resources. A certain amount of marketing skill is needed to
communicate the importance of the project in order to obtain the resources from the
organization. It is vitally important to allocate the correct resources to each task, and
to ensure equitable distribution of work loads across the team

Controlling Risk. The organization will expend a significant amount of money on the
project, and divert corporate resources to achieving the project goals. If the goals are
not achieved, then it is a waste, and the resources could have been better applied

Managing Information Technology Projects

elsewhere. The project manager must assess risk, eliminate it where possible, and
control it where it cannot be eliminated

Delivering Results. This is the ultimate responsibility ~ the organization chooses an
individual whom they believe can deliver the required results

People Management. Project managers have to balance the high task orientation
required to deliver results, with sensitivity to the people in the team. If we ignore the
human aspects, we run the risk of losing key resources, and ultimately not achieving
the results!

Coordination is vital to ensure that all the necessary activities take place in the right
sequence and at the right time. This can also involve resources which are not under
the project manager's direct control, for example, the Database Administration area.
Outside parties, such as equipment vendors or software houses may also be involved.
Good relations are thus important

Quality Assurance is vital. There is no point delivering on time if the result is
unusable, unreliable or unmaintainable. Quality can never be checked or controlled
into the product, it can only be built in, at every step of the project. Quality assurance
is thus an ongoing task from beginning to end

• Budget Control is necessary to ensure that the organization is not exposed to higher
commitments than it originally agreed to. The history of LS. projects in this area is
not encouraging, so it is one to which we need to pay particular attention

The Big Picture
Projects do not occur in isolation. Consider figure 1.4.

There is usually a sponsor ~ the person or group responsible for requesting the
project and funding it

We need to liaise with the Steering Committee (or Body) which is the corporate
entity responsible for ensuring that Information Systems and Technology are used to
good effect in the organization. It normally oversees all projects in progress and will
usually have a fixed meeting schedule, typically monthly or quarterly

There are Users at various levels to liaise with. These include: Senior management,
line management, operational management, and the people who will directly interact
with the system, or use its outputs. Other categories of users include those who will
operate the system, or maintain it in production

The project is normally staffed from the l.T. function within the organization,
although a number of user staff may be seconded. In this sense, there is a reporting
channel to LT. management

The project team will interact with other projects which we may depend upon, or
need to interface with. For example, if we are developing an application system
using a new database management system, we will have to work closely with the
project to install the new DBMS in the production environment

Facilities is the area which is responsible for the running of operational mainframe
systems. We will need to consider their requirements and constraints in the design of
our systems, and in the documentation which we produce

Chapter 1 The Nature of Projects 9

IT Management

Technical
Specialists

Architecture
Group

Development
Support

The Big Picture

Sub­
contractors

Project

Analysts
Designers

Programmers
Librarian
Secretary

Steering
Body

Users

Other
Projects

Facilities

Quality Assurance

A Web of Communication

Figure 1.4

• There is often a corporate Quality Assurance function, responsible for setting
standards, auditing results, and establishing procedures. We need to ensure that we
work closely with them to achieve the required quality levels

• We may not always have the required skills, or the required number of resources. In
these instances we may make use of external consultants or contractors. These
require careful management, since they can be expensive, and can also upset the
team who may feel that they are being pushed aside or having their capability
criticized

• We may choose to subcontract portions of the work to external organizations. This
requires that we give them very explicit requirements, and control the contract and
relationship carefully

• Some organizations have a Development Support Group which can provide valuable
assistance with system development methods, CASE tools, development tools and
use of new techniques and technologies

• There may be an Architecture Group whose job it is to ensure that the overall
portfolio of systems produced by all project teams integrates properly. They would
be concerned with issues such as shared data, system interfaces, and consistency of
user interfaces

• We may need to make use of various technical specialists from outside the project,
e.g., in the area of networking, performance optimization or facilitating Joint
Application Development (JAD) sessions

10 Managing Information Technology Projects

Within the project team, we can expect to have a variety of individuals in roles such as:

Analysts who will help with feasibility analysis, carry out surveys, interview users,
develop conceptual designs, and specify user requirements. They are normally also
heavily involved in prototyping, system testing, user training, documentation and
system implementation

Designers who are responsible for converting the user requirements into a workable
technical design capable of being built using the available resources and technology.
Analysts sometimes perform this role. Designers produce detailed system specifica­
tions, data designs, and program specifications

Programmers who are responsible for convening detailed designs into working
programs which can be executed by the computer. They will perform program
design, code the programs, and test their individual programs

Librarian and/or Secretary. The former is responsible for collecting, indexing,
storing and issuing project results, including specifications, designs, programs, test
data, user documentation and technical documentation. The latter performs the
normal secretarial duties, thus relieving project members of telephone answering,
setting up meetings, keeping records, typing, writing letters, filing and data capture.

Coordinating and managing this changing web of communication is not easy!

Project Phases
Projects typically comprise several pluJses. Each phase has a set of tasks, expected results
and quality checks. There are also some activities which are performed over the whole
project lifecycle, viz., People Management, Risk Management and QUality Management.
These are illustrated in figure 1.5. In addition, it may be possible to overlap phases to reduce
the overall time taken for the project. This has attendant risks, however, since we may find
that we need to change work performed based upon a specification which subsequently
changes.

Strategic Fit
Projects must be consistent with the overall objectives and direction of the organization if
they are to receive the support and resources that they need. They should be derived from a
considered corporate planning process, which sets priorities and identifies preliminary goals
and boundaries for the projects to be tackled. This relationship is illustrated in figure 1.6.
The project manager should understand the business context of the project he is managing.

Distribution of Effort
Most of the effort on a system development project goes into the so-called build phase (once
specifications are complete). The build phase includes detailed design, coding, testing and
documentation. We can save ourselves a lot of pain and money by ensuring that we have a
solid base upon which to work before entering this phase. Later in the text we will be
examining empirical evidence that illustrates this.

Chapter 1 The Nature of Projects 11

c c C <l.l <l.l
E E <l.l
<l.l <l.l E
Ol Ol Q)
C1l C1l Ol
c: c: C1l
C1l C1l c:

:::!E :::!E C1l

<l.l .~
:::!E

"5. ..lC

0 Cii U)

Q) :::l a: a.. 0

Project Phases Figure 1.5

I.S. projects were traditionally managed almost entirely within the I.T. function in the
organization, with user involvement only by way of interviews conducted by an analyst.

This picture has changed as systems have become more complex and critical to organiza­
tions. First, users were seconded to the project to work directly with the analysts and desig­
ners. More recently, it is not uncommon for users to manage the project. A structure
(illustrated in figure 1.7) which we have found works very well is as follows:

The nominal project manager is a high-ranking user with enough seniority and clout
to get the resources necessary for the project and makes decisions when necessary.
This person must lend status and priority to the project. He will not normally be able
to devote more than about 30 percent of his time to the project, since he will be in a
senior line position. He will carry ultimate responsibility to the organization for
delivering the project results. Seconded user personnel will have a solid-line
reporting relationship to this person and a dotted-line to the project leader

• The project leader is normally an LS. person who will manage the team on a daily
basis. He will report to the Project Manager (dotted line) and to the LT. Management
(solid line). This person should have senior status within the I.T. function, as well as
some business knowledge. I.T. staff allocated to the project will report to this person

Project Lifecycle
A major concern usually expressed is "If there are so many different kinds of I.S. projects,
how do I know how to manage them? Is there a way to manage all of them?" Fortunately the
answer is yes!

We can separate out the Project Lifecycle from the System Development Lifecycle or those of
the other project types mentioned. Figure 1.8, which will be used as a reference point
throughout, illustrates this. All projects share the phases: initiate, determine feasibility, plan,
estimate, execute, and terminate. The execute phase is iterative, with each iteration

12 Managing Information Technology Projects

Strategic Fit

Technical
Architecture

Corporlilte
Standards and
Methods

Figure 1.6

representing a phase of the type of project being managed. For a system development
project, these may be specification, design, programming, system testing and installation.
The systems development (or other) methodology will specify the tasks, deliverables (things
that are produced/delivered) and quality standards for each phase. The Project Lifecycle is
thus a container for the Systems Development Lifecycle (or other type of lifecycle).

In the diagram, we have depicted a generic project lifecycle suitable for all kinds of LS.

Senior Line
Management

Steering
Committee

~~~ 
~nage~ 

~------' ---,~ 

Line 
Manager 

Project 
Manager 

User Staff 
Une Specialists 

Management Structure 

LT. Staff 

~Iopment 
~~~~ger 

Project
Leader

Technical Specialists

Project Team

Figure 1.7

Chapter 1 The Nature of Projects 13

projects. Each project will have all of these phases. Notice that there are some activities
which occur once (Initiation, Determining Feasibility, Termination), while others occur for
every phase and some per task or activity in the technical lifecycle of the project. These
technical activities will depend on the type of project. For a systems development project,
they would be defined by the System Development Life Cycle (SDLC) employed. Those of
us from a programming background may be comfortable with a pseudo-code version of the
above:

INITIATE PROJECT
DETERMINE FEASIBILITY (USE ESTIMATING)
PLAN PROJECT (USE ESTIMATING)
DO UNTIL ALL PHASES COMPLET~

DO UNTIL TASKS FOR PHASE ARE COMPLETE
SCHEDULE TASKS
OBTAIN RESOURCES
EXECUTE TASKS
COLLECT RESULTS
CHECK QUALITY
ASSESS PROGRESS

END DO
REPORT ON PROGRESS
PLAN NEXT PHASE (USE ESTIMATING)
REVIEW

END DO
TERMINATE

For those not from a programming background, consider figure 1.9. This depicts the
translation of the generic project Iifecycle into a time-based bar chart. Activities are listed on
the left with a bar representing the time taken for that task in the graph. Activities which are

Project Lifecycle

14 Managing Information Technology Projects

COllect .
Results

CheCk
Quality

Assess···
Progress

Until All Tasks
Are Complete

/Per Phase

. Figure 1.8

stepped, for example, Initiate and Determine Feasibility, have dependencies - the latter
cannot proceed until the former is completed. Tasks which may occur in parallel (e.g.,
Estimating with Initiate and Detennine Feasibility), can be shown below each other,
indicating that they occur during the same time period.

Tasks 1 through n represent the activities specific to a phase determined by the systems
development or other methodology dependent upon the type of project undertaken. For
systems development these would include tasks like Meet with Users, Develop Data Model
and Analyze Current System.

The bracketed set of activities represents a phase within the project. Typical phases for a
development project would include: Analysis, Design, Build, Installation, etc. For each
phase, the structure will be repeated, but the Tasks 1 through n will be unique. See chapter 8
for more details of the various lifecycles.

In the chapters that follow, we will discuss the relevant tasks and techniques for each part of
the lifecycle. As we progress, we will highlight different aspects of the project management
lifecycle diagram to show the areas to which the topics under discussion are relevant.

Initiate
Determine Feasibility ,
Plan
Estimate
Schedule
Obtain Resources
Execute Task 1
Execute Task 2-n
Collect Results
Check Quality
Assess Progress
Report
Plan Next Phase
Refine Estimates
Review

'---,
1-- -----,

, ,-
I... __ _

,
1--­,
r--

L.. ,
I- ------

Execute Phase 2-n :
r-··---- -----

Terminate 1 ________ _

Project Lifecycle as Bar Chart

_____ I

___ J:.his_s~i]Ets_ol ~cJiyi!ie_s_b~t with_ _ :
unique tasks witl be repeated for

- - - - - -subsequenf phases- - - - - --
-.."",""'"

Figure 1.9

Chapter 1 The Nature of Projects 15

Introduction

2 Project
Initiation

In this chapter we will be dealing with the initiation of the project. These are the activities
which happen right at the outset, as shown by the highlighted block in figure 2.1.

Collect Until All Tasks

j Results Are Complete

(Check) Quality

(Assess) Progress

/Per Phase

Project Lifecycle Figure2.1

Project Definition
When a project is suggested or derived from high-level planning, one of the first things we
need to do is to define it. This allows us to begin thinking sensibly about its goal, scope and

Chapter 2 Project Initiation 17

feasibility. The project definition could be as small as a one-page form (figure 2.2), or as
large as a ten-page typed document. In either case it should include the following items and
sections:

The company or organization name

The area, division, section or other organizational unit requesting the project

• The individual who originated the project request

The date that the definition was drafted

The project sponsor - the person who will take overall business responsibility for
project funding and success

A title for the project. This is important! People will have to live with it for the
duration of the project. Watch out for titles with nasty acronyms

A unique project code, which will be used for costing and identifying the project

The project goal. This must be clearly stated, preferably in one sentence. For
example:

Implement, at all branches of the bank, a user-friendly inquiry system, using existing
ATM facilities, which clients can use to inquire on the status of their own bond
accounts

A void fuzzy or open-ended goals such as:

Develop the necessary accounting systems for Retailers Inc.

Remember that projects are mounted to achieve change. The goal is the net change
desired in the environment when the project is completed successfully. It must be
achievable within the constraints of budget, resources, technology, policy and legal
requirements. In setting up our project, we should also ensure that it does not violate
ethical or moral guidelines (for example, invasion of privacy)

Priority in terms of Quality, Cost and Time (Schedule). This should be negotiated
with the sponsor, and ranked as 1, 2 or 3, with 1 being most important, and 3 least
important. Explain to your sponsor carefully the relationship between these. This
ranking will serve as a guide later in the project when trade-offs need to be made

Terms of Reference. These are enduring constraints or limitations which the project
must bear in mind. They may include:

Technical issues such as "The project must be implemented using the current
hardware configuration and network" or "The application package purchased
must conform to corporate standards with respect to DBMS compatibility"

Resourcing issues such as "The project must not consume more than three
programming resources at anyone time"

Policy issues such as "Because of the competitive and confidential nature of
the project, no external resources are to be used"

18 Managing Information Technology Projects

PROJECT DEFINITION

Company ______ -'Project Manager ______ _

Division Originator ________ _

Date ________ .Sponsor _________ _

Project Title _________ ,Project COde ___ _

Project Goal ________________ ---'-_

______________ .Priority: Q_ C_

Terms of Reference _______________ _

Business Deadline, ________ Budget _____ _

Assumptions _________________ _

Related Projects ________________ _

MorallEthical or Legal Issues ___________ _

Project Definition Form Figure 2.2

Legal issues such as "The system produced must conform to all requirements
of the Hire Purchase Act and its amendments at implementation date"

• The Business Deadline is the date by which the project should be complete and have
delivered its final results to the organization. This is also the date on which the cost­
benefit analysis has been based. Any delay in implementation beyond this date will
cause the project benefits to be reduced. For example, there may be a major
marketing advantage to being the first insurance company to offer a new type of
policy. If we miss the deadline, a competitor may beat us to it, thus negating a large
proportion of the anticipated benefits from the system

• It is vital to spell out assumptions which have been made in the project definition and
planning. These may be crystal clear to you at the outset, but may be very obscure to
someone joining the project later. Explicit assumptions also allow us to check them
as the project progresses. If we find that they were not valid, we have an early
warning to rethink our approach

• The project budget should be specified in the form of a range and in resource units,
e.g., persondays. The latter is to preserve a consistent base in the face of inflation and
across currencies. We need a range because, at this stage of the project, we do not
know enough about it to determine an accurate estimate. We will return to this topic
in chapter 7

Chapter 2 Project Initiation 19

We need to identify Related Projects which:

We depend upon for their results, e.g., if we are writing a Sales Analysis
system, we will be dependent upon the Point of Sale system which collects the
sales data

We will integrate with, so that our interfaces are defined consistently. We may,
for example, be developing a Personnel system, which will interface with a
Salaries Package being implemented by another team

Which follow on from our project. We may be creating results which another
team will use, e.g., A menu and help system which will be used by all online
systems in the installation. We need to keep dependent projects informed of
our progress and any issues which they should be aware of in their own
analysis and design

Moral, ethical and legal concerns or issues which must be addressed sensitively
should be detailed to sensitize project members to their existence and ensure they are
not overlooked. Some of these may also translate into specific activities in the plan to
address them. For example, staff whose job function may change as a resul t will need
to be consulted, counseled and possibly retrained

Project Feasibility
Before the project can proceed, we need to establish if it is possible and a smart thing to do.
This follows initiation and is done together with estimating, as shown in figure 2.3. There
are a number of aspects to feasibility:

Business issues

Technical issues

Time

Feasibility from a business perspective can be judged in several ways, depending upon the
organization culture and the type of project.

We may foresee cost savings. This is typical of systems which replace repetitive
mechanical or clerical tasks, or which optimize an expensive process. Examples
include a Delivery Planning System which would optimize routing of trucks; a
Material Requirements Planning (MRP) System in manufacturing which will reduce
raw material holdings (and capital costs); a system to calculate the least-cost mix of
raw materials to produce a lubricant with required properties; an electronic mail (e­
mail) system to reduce postage costs

We may want to offer new services to our clients, thus attracting them to do business
with us, rather than with our competitors. An example here is new types of home
loan which allow clients to borrow without formalities against the paid-off capital
portion to the limit of the original loan amount

There may be mandatory changes required as a result of technology becoming
obsolete, or because of legislation. For example, a project to replace a mainframe
which will no longer be supported by the vendor or a project to implement the
collection of Value Added Tax (V AT)

20 Managing Information Technology Projects

(
(Collect Until All Tasks

Results Are Complete

C Check) Quality

~.
Assess

.,
Progress I

/Per Phase

Project Lifecycle Figure 2.3

We could be looking for strategic advantage through various avenues:

Providing facilities to our clients. Example: Home banking

Linking tightly to our suppliers to reduce our inventories and realize discounts.
Example: An airline logistics system linking directly to a catering firm which
supplies in-flight meals

Running more efficiently, thus reducing prices. Example: Retail supermarkets
employing scanning to keep precise track of inventory

Better decision making - allOwing us to use corporate resources more
efficiently, to choose which markets to pursue and which products to promote
or phase out. Example: The American Airlines Sabre reservations system

With this category of sy'stems, there will normally be no cost saving, and a traditional
cost-benefit analysis would reject them. Also, there can be high risks. However,
there can be major benefits when they succeed. Timing is usually crucial, and you
should examine the effects of delays to the final date before committing to the
project

There can be technical reasons for mounting the project, including:

Unstable, old technology, which is no longer reliable, for example, a system
running on an old network protocol which does not have adequate error control
and security

Chapter 2 Project Initiation 21

Performance of the old system may be inadequate to cope with business
volumes, and the architecture may not allow an upgrade in the same
environment

The old system was poorly designed and documented, and cannot be reliably
or economically maintained

Skills are not available, for example, an old system was written in assembler,
but could now be coded for a PC environment using a high-level language

Time is a strange consideration at ftrst glance. We include it since management
will often want something done in an impossibly short time. There are tasks
which cannot be shortened, regardless of how much we spend, or how many
resources we apply. This is counterintuitive, but unfortunately an empirically
proven fact. We must therefore check that the business deadline is a feasible
one, even if all the other project parameters are acceptable.

Feasibility Report
When the various alternative approaches to the project have been investigated, we will
normally prepare a feasibility report (ftgure 2.4) containing the following:

An executive summary including:

Objecti ves of the study

Scope of the study

Possible courses of action

Pro's and con's

Recommendations

Decision Criteria. The criteria that were laid down in terms of which feasibility was
judged. This may include details of how cash flows were calculated, how project
estimates were arrived at, assumed cost of resources, etc.

Source and Reliability of Data. Details where we obtained our information, how
reliable this is and what level of error our estimates and calculations contain

Outline Requirements of the Proposed Solution. What the system or project would
have to achieve to be considered successful. This should include the terms of
reference, interfacing to other systems and compatibility issues

Alternatives considered, with details of:

Operational Attributes - what is unique about this option in terms of how it
would behave in operation?

Economic Implications - how does this option compare to others in terms of
expenditure and cash flow?

22 Managing Information Technology Projects

Executive Summary

• Objectives
• Scope
• Possible Courses of Action
• Pro's and Con's
• Recommendations

Decision Criteria

Source and Reliability of Data

Outline Requirements

Alternatives

Comparison of Alternatives

Recommendations

Feasibility Report

Alternative n

• Operational Attributes

• Economic Implications

• Technical Approach

• Risk

• Resource Implications

• Organizational
Implications

Figure 2.4

Technical Approach - what are the unique features of the technical approach;
how is it superior to or inferior to the other options? Remember to include
support considerations

How risky is the option; how could this be controlled?

Resource implications of this option relative to the others. Bear in mind
resource seniority, skill level, availability, number required and duration of
assignment. Highlight internal and external resource categories

Organizational implications, with particular respect to changes required in the
environment or in the way that users perform their functions. Consider training
implications. Pay careful attention to any changes in job function or redundan­
cies which might arise

• Comparison of alternatives, preferably by way of tables and graphics

Recommendations. This should include a preferred option and a second choice, in
the considered opinion of the person/people preparing the report. The alternatives put
forward should be well supported by the data presented. Remember that we want to
determine feasibility - "not feasible" or "do nothing" are legitimate options in some
circumstances. It is also legitimate, where the suggested approach is not feasible, for
the study team to suggest an alternative approach, or to recommend further investiga­
tion

Chapter 2 Project Initiation 23

Project Justification
Projects may be justified regardless of the outcome of a cost-benefit analysis. They may
proceed because of:

Benefits or savings

Legal necessity

Technical necessity

Competitive advantage or

Purely political reasons

Plan and Design
Once a project has been approved and we are given the go-ahead to begin work, the next
step is project design (see figure 2.5). This includes:

• Establishing boundaries and scope

Identifying standards, methods and techniques to apply

• Identifying the technical environment in which we will be working

Identifying and customizing the tasks to be performed for inclusion in the project
plan

Project Lifecycle

24 Managing Information Technology Projects

Collect
Results

Check
Quality

Assess
Progress

Until All Tasks
Are Complete

/Per Phase

Figure 2.5

Determining the skills required

• Estimating effort and durations

• Allocating resources to tasks

Planning dependencies

• Seeking approval and revising

We will examine each of these in turn.

Scope of Project
Determining the scope of a project and managing it thereafter are vital to project success. If
we get the scope wrong, or allow it to balloon, we are doomed. For some types of projects,
the scope is fairly clear and can be expressed verbally, e.g.

Convert the existing batch ICL system to an equivalent IBM batch COBOL system without
any change in functionality.

Install a Hewlett-Packard 9000 series machine and the AUTODRAFF CAD package in head
office to support two design engineers andfive draftsmen.

Even these have some loopholes:

• Does the conversion include files, or only the code and system control language?

What about documentation - is this part of the objective?

Is training in the CAD package included or not?

Is there a prepared site for the machine and workstations?

We need to be very explicit in determining the scope. Mistakes can see the project size
double, without any change in the available resources or budget.

Where the scope is fuzzy, such as in a system development project, or where new
technology is involved, there are some useful diagrammatic techniques which can be
employed. We recommend that you routinely use these for all projects.

Context Diagram
A context diagram is a high-level data flow diagram, with the proposed system shown as a
single process box. See figure 2.6. Around the perimeter are all those things (external
entities) with which the system will interact. These may be individuals, departments or other
systems. Between the external entities and the central system are nodes representing
collections of data which are involved in the communication. These may represent
documents, files, screens, reports, etc. The medium through which the exchange occurs can
be indicated in the node symbols. Examples follow:

Chapter 2 Project Initiation 25

Boundary
---.,

I

Data Flow

Context Diagram Figure 2.6

R Random access medium

S Sequential medium

H Hardcopy, paper forms and reports

C Communications link

P Parameter passed in realtime

Arrows are used to indicate the flow of information and are labeled to indicate the collection
of information.

A boundary is drawn to indicate the scope of the proposed system. Data groups (nodes)
which are within the boundary will be maintained by the system, and the project can define
their format. Those outside the boundary are maintained by other systems/sources and the
system under consideration would have to adhere to the requirements imposed.

A highly simplified example of a context diagram for a Salaries system is shown in figure
2.7, In this example, the Payroll Clerk will feed the system with monthly changes via an
online terminal and receive printed reports. Employee data is read from a database
maintained by the Personnel System. Employees receive printed pay slips, and their bank
accounts are credited electronically via transmission of transactions to the banks. The
envisaged system could dictate the format of the summary reports, the way in which the
payroll clerk communicates change data and the format of the pay slip. It would have to

26 Managing Information Technology Projects

Monthly Changes

Summary Reports

Employee Data
Personnel 1-----..< R)---'--'----'------JIoij

System

~~~~~ Payslip 
r ~--------~--~~H 

Payroll 
System 

~ 
L::J 

~~nic Deposit ' 
--~------r--~ .. __ .. __ .. __ ~ 

Context Diagram Example Figure 2.7 

adhere to formats dictated by the Personnel system for employee data and by the banks for 
electronic deposit transactions. The Payroll system makes use of an embedded Tax system, 
which might already exist, or be developed as a separate project. We have left out 
communication with the Tax Authorities, and all detection and reporting of exceptions for 
simplicity. 

Technical Environment 
We need to consider the proposed technical environment in some detail, since this will 
influence the skills which the team needs, the methods that we will employ, the physical 
location where team members will work, and our task estimates. Some factors for 
consideration: 

• Are we going to use Personal Computers (PCs), Minicomputers or Mainframe? A 
combination of the above may be appropriate; for example, a client-server applica­
tion, where the database is centrally held on a server, but intensive graphics process­
ing is performed by workstation software 

• Will the system be centralized or distributed? Centralized systems are usually easier 
to specify and test, particularly in the area of controls. They may be less user 
friendly, more expensive and less flexible than distributed systems. The choice could 
influence testing and implementation strategies markedly 

What will the software environment contain? 

Transaction Processing (TP) Monitor 

Chapter 2 Project Initiation 27 



Database Management System (DBMS) 

Co-resident software/routines such as menu, logging or help systems 

Network control and management 

User interface: character based or graphical? Full screen or interactive at field 
level? 

• What development tools will we use? 

Which language 

What compilers, linkers, debuggers, generators, etc. 

Are there any collections of library routines, class libraries, components or tool 
boxes available to simplify our development? 

What types of hardware will the system need to be aware of? 

Terminals 

Printers 

Special equipment, for example, A TMs, Scanners 

• What variations will there be between development and production environments? 

Are there particular performance or response time constraints? 

What about security? How critical is the system, and what measures are available to 
us? 

Who will the direct users of the system be? For example, a system to be operated by 
members of the public will need a different user interface than one designed for 
expert data capture operators 

A useful tool to help us define the technical environment which we envisage is the Technical 
Environment Model (figure 2.8). This represents the technical components (hardware and 
software) with which the system will interact. A central box represents the node in which the 
software will run. Within this, layers represent co-resident software components, including: 

Network software, for example, Virtual Telecommunications Access Method 
(VTAMTM) 

• Teleprocessing software, for example, Customer Information Control System 
(CICS~M) 

Application infrastructure software, for example, a menu system, audit trail logger. 

Co-resident software, for example, a library of functions, or an online help system 

• Database software, i.e., the DBMS or file management software 

Operating System e.g. MVS, Unix™, MsDosTM 

28 Managing Information Technology Projects 



Teleprocessing Software 

Application Infrastructure SW 

I Application 
Software 

Technical Environment Model Figure 2.8 

Linked to the central node are commumcation links, indicating the types of nodes through 
which communication may pass, the types of communication links employed, the type of 
equipment at the user locations and the classes of users who will access the system. Also 
linked to the central node are details of the database(s) the system will access. Database here 
is used loosely to mean a collection of related files. 

Figure 2.9 is an example of a simplified Technical Environment Model for a project which 
will be implemented in an IBM Mainframe environment, with attached Personal Computer 
(PC) and dumb terminal workstations (3270 screens). It shows that we are using the CICS 
teleprocessing monitor, VT AM"'" network software, a home-grown help and logging system, 
the DB2" .... database management system and the MVS""" operating system. 

Product Breakdown Model 
An extremely valuable technique is the Product Breakdown Model (PBM), shown in figure 
2.10. This can only be prepared at summary level at this stage of the project, but will be 
expanded as the project proceeds. It is an essential tool in establishing and controlling the 
scope of the project and will form the basis for change management and quality assurance. 

The PBM is a hierarchical chart indicating the products that the project will deliver. The 
highest level represents the total result from the project. Finally, the lowest level will 
indicate individual deliverables which will be produced by a person carrying out a project 
task. At this stage we will probably be able to record only about three levels of detail; 
nevertheless, the exercise is extremely valuable, because it helps to set the expectations of 
the team and sponsor correctly. 

Chapter 2 Project Initiation 29 



Ethernet 
Base 10 

Technical Environment Model Example 

Installed 
HR System 

I 

I 
I 

Software 
I 

User 
System Manual 

I 

I 
I I 

Production I Conversion 
Programs 

I 
Programs 

Product Breakdown Model 

30 Managing Information Technology Projects 

Help & Logging (HELLO) 

Pricing 
System 

I 
Converted 
Production 
Data 

j 

Trainin g 
e Packag 

Figure 2.9 

Use functional decomposition techniques 

Figure 2.10 



Standards, Techniques, Methods 
We will need to decide how we are going to run our project. 

• Are we going to use a particular development methodology? 

Are there corporate standards in place for project activities? 

• Are there accepted techniques which our staff have the skills to use? 

Are there quality standards that we can use? 

• Are technical and programming standards in place for the environment? If not, do we 
need to develop these as a subproject? 

• What is expected in the way of documentation? 

• What techniques will we use for testing and validation? 

• Are there automated project management tools available - if so, are there any 
previously developed or skeleton plans which we can use? 

It may be necessary to identify areas where the team is lacking in skill so that we can arrange 
the use of external resources, or appropriate training. 

Determining Tasks to Perform 
Tasks to be included in the project can be determined from several sources; 

• Further decomposing the PBM to identify individual deliverables, which are indica­
tive of the tasks needed to produce them 

• Using the tasks specified in your system development or other methodology 

• Adding the necessary tasks indicated in the project lifecycle presented earlier 

• Ensuring that you have provided for ongoing tasks such as team management 

• Ensuring that you have included necessary training and infrastructural tasks, such as 
defining missing standards 

• Think about each task and whether it has any dependency. Is the prerequisite task 
included in the schedule? 

It may sometimes be useful to construct a matrix, such as the one shown in figure 2.11, 
mapping deliverables against tasks. A further refmement can be realized by entering 0 for 
output, I for input or 10 for input and output in the cells. It is possible to use this for 
determining dependencies, which will be useful later. ' 

Chapter 2 Project Initiation 31 



Tasks 

Qi 
~ ~ ~ 

"0 
(\l 0 

(f) (J) (\l :! E (f) c:: Cl E 
(5 ::::> .2 (J) d 

~ t5 ..c: c:: (J) u.. Cl () :::l Cl. 
t5 (J) -=: 15 (f) u.. >. 
.!B '2: -, 

~ ::: (5 

'0 (J) c:: 
~ e £ :::l 

(,) a: Cl Cl a.. 

Data Model 

Function Model 

User Interface 

Include: 

• Technical Tasks • a.A. Tasks 

• Management Tasks • Dependencies 

Determining Tasks to Perform Figure 2. 11 

Determining Skills Required 
To determine the skills which the team will need to perform the required tasks, we can again 
refer to our chosen methodology or construct a similar matrix to the one shown. See figure 
2.12. This maps skills on one axis, against tasks and job titles on the other. First list the 
tasks, then the skills, and then map these to the job titles. Where the tearn will not have the 
required skills, consider entering external support groups, e.g., network support, or consul­
tants into the job title area. 

Estimating Durations 
We will cover the whole area of estimating in detail in chapter 7. At this stage we may need 
to derive some initial estimates to give us a feel for the overall effort (and hence cost) as well 
as duration of the project. We should be working in ranges at this stage, since there is a high 
degree of uncertainty. The most accessible estimating technique at this stage is a Work 
Breakdown Structure. 

32 Managing Information Technology Projects 



Skills 

~I Ii;; ~ I I (J) 
.2 

i c: 0 c: "§ .c I-
:\ 0 0 Ol U 

~ c: .5 0) C 
u ~ Q) I- 0) 

'c (J) "0 0) E 
::l (J) 0 (J) c.. 
E 0) :E (\l 0 

c: .0. i> E 'iii .s! .s! :> 
0 :::l (\l (\l 0) 
() CO a a a 

Interview Users X X 
I/) 

Normalize Data 
I 

.:t: X X X I/) 
IU 
I-

Prototype I X X X 

Systems Analyst X X • X 
CP 

~ Technical Analyst X X X 
Sl 
0 xl 

I 

"'",) Analyst Programmer X X 

Determining Skills Required Figure 2. 12 

Work Breakdown Structure 
We can construct a Work Breakdown Structure (WBS) which represents the project as a 
whole at the top level, and phases and tasks at the lower levels. The greater detail we can 
obtain in the WBS, the more accurate our estimates can be. We would achieve an overall 
estimate by estimating for the lowest level tasks on the WBS, and collating the figures 
upward. The total of all tasks will be our overall estimate. Figure 2.13 illustrates this. 

Determining Dependencies 
To determine dependencies we can consult our methodology or refer to a matrix that maps 
tasks to deliverables. Once we have dependencies, they can be represented in the form of a 
network. We will cover formal methods for doing this later. We should only include definite 
dependencies and not worry too much about partial dependencies at this level. Figure 2.14 
shows how dependencies c.an be derived from a matrix. 

Chapter 2 Project Initiation 33 



A Definition of Success 
When is a project successful? By our definition when it satisfies all three of the following 
criteria: 

• It meets requirements (of functionality, reliability, maintainability, portability, 
efficiency, integration and operability) 

It is delivered on time 

• It is delivered within budget ~----------.. 

,,--""-----'-----"""' 
Analysis Phase 45-80 

Functional Analysis 20-30 Data Analysis 15-23 System Consistency 2-3 

Collect Data 10-151 Normalize Data 
,~~~~~~~~~ 

Group Data by Key .5-1 

Build WBS 

• Include technical tasks 

• Include management tasks 

• Show phases at second level 

• Show O.A. tasks 

• Decompose until "work packages" 
are obtained 

Estimating Durations 

3.0-5.0 Build Data Model 

Optimize 

Estimating 

• Do it at lowest level in WBS 

• Summarize upwards 

• Work in resource units 

• For any task which exceeds 5 days 
- Decompose further 
- Estimate components 

2-3 

.5-1 

Figure 2.13 

34 Managing Information Technology Projects 



In the I.S. industry, we are frequently gUilty of meeting only one of these, namely 
requirements (and then only partially!). Horror stories abound of projects that run several 
hundred percent over budget, and take twice as long as anticipated. By our definition, less 
than 20 percent of I.S. projects are successful. This is an extremely worrying figure, and 
illustrative of the great need for better, more informed, more disciplined project 
management, such as this book encourages. 

Tasks 

I 
~# 
I 

& ..: 
OJ C\l co Q,) E Cii a: 

Q Q 
Q,) 

c.. 
Qi r N c 

2:- .~ "C C\l 0 C Q,) 

~ C « Q , 
I 

Data Model 0 I I I 

Physical Database 0 I 

Functional Model 0 I 

Program Design ! 
0 

Determining Dependencies Figure 2. 14 

Chapter 2 Project Initiation 35 



Case Questions 

MyWay Organizer 
Q2.1 
Complete a Project Definition Form for the MyWay Organizer project. (10 minutes) 

Q2.2 
Scope the MyWay Organizer system using a Context Diagram. (10 to 15 minutes) 

Q2.3 
Draw a Technical Environment Model for the MyWay Organizer system. (10 to 15 minutes) 

Gleam Stores 
Q2.4 
Prepare a Project Definition Form for a Gleam Stores project to fully document the system 
and prepare a training package. Assume that both user and system maintenance documenta­
tion are required. (20 minutes) 

Q2.5 
Prepare a Context Diagram for the Gleam Stores pilot system. Include all existing systems 
with which this will interface, as well as interfaces to the proposed "package" productivity 
applications. (25 minutes) 

Q2.6 
Draw a Technical Environment Model for the Gleam Stores pilot system. Include the 
workstation component and related software on the Head Office mainframe. (25 minutes) 

Q2.7 
Determine the financial feasibility of the suggested approach of replacing dedicated 
terminals with "conunodity" PC workstations. Figures you have obtained from colleagues 
and Gleam management include: 

36 Managing Information Technology Projects 



Currently Installed Equipment: 
460 terminals, of which 200 are masters. Some 15 percent of these reguire replacement 
annually. 
Hardware cost of installing/replacing a dedicated terminal is $3500. 
Equipment is written off over five years with straight-line depreciation. 

Software: 
Software for dedicated terminals costs $300 for a workstation or $500 for a master. There is 
a sliding scale discount on volume. For each (additional) ten copies purchased as a bulk 
order, the software cost reduces by 5 percent. For 12 copies discount is 5 percent, for 20 
copies 10 percent. 

Plans & Costs: 
Forty new stores are planned to open in the next two years. Growth beyond that is projected 
at 15 percent per annum. 
Estimated terminal population in these stores is 90. 
Cost of a suitably configured PC to act as a workstation using the new software: $950. 
Software cost per PC is $120. Networking software for Server (replacing master) is $500. 
Installation of dedicated terminals must be performed by vendor personnel at $75 per hour. 
PC installation would be completed by our own staff costed at $30 per hour. 
Installation in both cases is estimated to take two hours per workstation, plus half a day per 
network in new branches. Where PCs replace old machines, the same network cabling can 
be used. 

Pilot: 
The pilot software development has to date cost $92 000. Documenting, stress testing and 
development of training materials is estimated to cost a further $35000. 

In your answer, try to show the position for the alternatives year by year. Would you 
recommend Gleam go ahead with this approach? Could you suggest a better alternative? 
(30 to 40 minutes) 

Handover Trust 
Q2.8 
Think about and detail the ethical issues and organizational issues which may arise as a 
result of the proposed project. How could you handle these sensitively,? (35 minutes) 

Chapter 2 Project Initiation 37 



ThoughtWell Books 
Q2.9 
Scope the system using a Context Diagram and Technical Environment Model. (1 hour) 

Q2.10 
Determine what skills will be necessary in the team to tackle the project. What job titles 
would these relate to? (30 minutes) 

38 Managing Information Technology Projects 



3 The Work 

Tasks 
When we think of a project, this is usually the ftrst thing that comes to mind - work to be 
done, tasks to complete. 

There are technical tasks, such as drawing up data models, writing speciftcations, 
coding programs 

There are managerial tasks, such as supervlsmg the team, checking quality, 
controlling risk, and reporting on progress 

• There are people oriented tasks, such as selecting a team, motivating the team and 
counselling a team member 

To carry out the project successfully, we need to 

• Include all necessary tasks 

• Make sure the tasks are of manageable duration 

Estimate the effort and duration for tasks as accurately as possible. This will be dealt 
with in chapter 7 

Ensure that tasks are allocated to the correct resources and vice-versa. See chapter 8 

Monitor the completion of the tasks as they are carried out to ensure that we are not 
falling behind and that the quality of delivered work is high. This will be explored in 
chapters 12 and 15 

Source of Tasks 
Most of the tasks will be of a technical nature. These are normally dictated by the nature of 
the project, and can be derived from a formal methodology where one is employed. 
Examples would include SSADM (mandated by the u.K. Government) or Information 
Engineering (popular in commerce). 

There will also be management tasks - normally to control the project, liaise with 

Chapter 3 The Work 39 



management, ensure quality and so on. These are more related to the organization's 
philosophy of reporting and quality assurance and are likely to be unique to the organization. 

A system development project will have tasks such as: 

Establish feasibility 

Plan the project 

Define user requirements 

Specify technical design 

Build the system 

Test the system 

Prepare operational documentation 

Train users 

Install the system 

• Post implementation review 

Manage the team 

Report progress to management 

These tasks will often be too large to manage as a unit, and will in turn have sub-tasks. For 
example "Define user requirements" may be broken down to: 

• Establish scope of system, major inputs and outputs 

• Analyze current system 

Interview users regarding additional requirements 

Prepare functional model of proposed system 

• Prepare data model for proposed system 

Review with users 

Prototype behavior of new system 

• Finalize requirements document 

To be useful, we need to get to a level of task that is of a manageable duration, and which 
can be assigned to a single person, or small group, for completion. 

Work Breakdown Models (WBM) 
You probably noticed that there was a sort of hierarchy when we decomposed the "define 

40 Managing Information Technology Projects 



user requirements" task above. We could have specified sub-tasks for other high-level tasks 
in a similar manner. We could also carry the decomposition further, for example, by 
decomposing the task "Prepare data model for proposed system" to: 

• Identify major entities 

• Collect attribute data 

• Identify keys for each major entity 

• Construct Entity Relationship Model 

A useful way, therefore, to view our tasks, sub-tasks and sub-sub-tasks for a project, in 
relation to each other, is a hierarchical chart, known as a Work Breakdown Structure (WBS), 
shown in figure 3.1. 

In the WBS, each level is decomposed further into the next level, giving its "children", TIlls 
can be done using the functional decomposition technique familiar to us from structured 
analysis: 

Initiation Phase Analysis Phase 

Functional Analysis Data Analysis 

Collect Data 

Apply Normalization Aules 

• Include Technical Tasks 

• Include Management Tasks 

• Show Phases at Second Level 

• Show Q .A. Tasks 

• Decompose Until ·Work Packages· 
Are Obtained 

Work Breakdown Structure 

System Consistency Check 

Build Logical Data Model 

,_______ L ______ ~ 

Optimize 

Figure 3.1 

Chapter 3 The Work 41 



For each box, ask the question: "What must I do in order to achieve this?" The 
answers indicate child boxes 

• There should be between 2 and 6 child boxes per parent. If there were to be 1, this 
would, by definition, be equal to the parent box, and is therefore superfluous. If 
there are more than 6, human short-term memory starts to lose track when we want 
to consider all the children for a parent together. If you find you have more than 6 
children, look for missing intermediate levels that could group some of these 

To check if a child box is in the correct place, ask the question "Why do I do this?" 
The answer should be the parent box 

Wording in the boxes should have the form: 

[ verb] {quali fying clause} [object] {qualifying clause} 
where square brackets [ ] indicate required items, and braces {} indicate optional 
items, for example: 

Define Functional Model 

Integrate System with Sales Analysis 

Set up Valid Test Data for Transactions 

We need to ensure that our Work Breakdown Model (WBM) contains all the tasks, not just 
the technical ones. Be sure to check that Quality Assurance (QA) steps and management 
tasks are specified. Tasks may also need to be included to address legal, ethical or human 
factors issues. 

In this book we will refer to items at the lowest level of the WBM as tasks, and to those at 
higher levels as work clusters. For each task, we need to identify the information in the 
following section. Figure 3.2 shows the relationship of task definitions to the WBM. 

Task Definition 

• 

• 

42 

Task description 

People arui groups involved. Who will perform the task? What sort of skills are 
required? 

Applicable techniques. How do we carry out the task? Is this specified in our 
methodology, or other corporate standard? 

Pue there any prerequisite tasks which must be complete before this one can be 
tackled? For example, data collection must be complete before a relational data 
model can be constructed 

What deliverables are required as input to the task? What will the task produce? The 
functional analysis task, for example, may require as input the current system 
description, and produce as output the functional model 

Pue there any particular dangers associated with the task that we should look out for? 

Do we know how to estimate how much effort the task will consume and how long it 

Managing Information Technology Projects 



People and Groups Involved 

Applicable Techniques 

Prerequisite Tasks 

Deliverable(s) 

Dangers 

Estimating 

References 

Tools 

Data Items created and updated in repository 

Work Breakdown ModeJ Figure 3.2 

Chapter 3 The Work 43 



will take with the resources available? 

• Are there any sources of reference or reusable components which we use in 
performing the task? For example, a standards manual, programming language 
manual, methods description, sample library or class library 

Is the task supported by any tools. For example, project management software, 
CASE tools, Data dictionary, compiler, editor, etc. 

If using a dictionary, or repository-based CASE approach, what data items in the 
dictionary or repository are affected by this task? 

A sample task definition follows for the definition of an entity model. This is taken from the 
Inspired ITIM method used in an IEF CASE environment: 

Task description 
This task creates an entity model which describes the inherent 
structure and relationships of data groups in the application 
domain. 

People and groups involved 
The systems analyst, business analyst, data analyst or systems 
architect are typically responsible for the successful completion of 
this task. They will require extensive assistance from a 
knowledgeable user community in the development and verification 
of the model. Where a corporate Data Management function exists, 
this group/individual may be required to approve the resulting 
model to ensure smooth integration with other projects and subject 
areas. 

Applicable techniques 
The Martin-McClure entity modeling approach should be used. This 
begins with intuitive naming of candidate entities, followed by 
collection and allocation of attributes to these candidate entities. 
Finally, identifiers are chosen for each group, non-entities are 
discarded, and relationships between remaining entities are 
determined. 

Prerequisite tasks 
Data collection. Project Design (including identification of key 
users). 

Deliverables 
A neatly presented entity relationship diagram making use of the 
Martin-McClure notation. Many-to-many relationships are permitted 
and should not be resolved to junction boxes. 

Entity definitions listing the name, data items and key components 
for each entity. Only data items required for primary and foreign 
keys need be recorded at this level. Other data items 
serendipitously discovered may be documented, provided this 
activity does not introduce unnecessary delays. Definitions should 
be captured in the Data Encyclopredia. 

44 Managing Information Technology Projects 



Definitions for all data items discovered or required for keys should 
be captured in the Data Encyclopcedia. 

Dangers 
Do not go into too much detail - for example, trying to locate all 
attributes of the entities. 
Do not expand the scope to include entities which have no bearing 
on the application context. 
Do not worry about normalization. The entity model does not need 
to be normalized. Repeating groups are acceptable. 
Introducing duplicates of items already in the Encyclopcedia without 
realizing that they already exist in other systems and databases. 

Estimate 
Allow approximately one week for data collection (longer if user 
community is geographically dispersed or relatively unavailable). 
Allow between 1 to 3 days for formal data analysis and capture into 
CASE tool. Allow 1 to 2 days for review with users and technical 
auditor. Allow one day to amend model following review. 

Reference 
See Martin-McClure, "Recommended Diagramming Standards". 

Tools 
All information and models to be captured into the IEF CASE tool. 

Data items affected 
Entity Name 
Entity Description 
Per attribute: 

Entity Attribute Name 
Prime Key Component (true/false) 
Foreign Key Component (true/false) 

Existing Database Relations 
Relation Name 
Technical Environment 

Required Retention Period 
Archival Frequency 

ERDName 
per Entity: 

Entity Name 
Position 

per Relationship 
From Entity 
To Entity 
Cardinality 

Chapter 3 The Work 45 



Phases 
In LT. projects we will normally show our major configuration management phases at the 
second level of the Work Breakdown Structure, as shown in figure 3.3. We will explore 
configuration management in more detail in chapters 14 and 15. 

At the next level of detail, the first child will normally be a task addressing any issues raised 
at the previous phase's concluding review. The second last child will be an update of the 
plan for the next phase, followed by a review of the deliverables completed in this phase. 

Note that this is consistent with the generic project management cycle which we 
presented in chapter 2. 

Manageable Unit of Work 
Earlier we introduced the idea of a manageable unit of work, or MUW. This is a very useful 
way of staying out of trouble. If we include large chunks of work in our project plan, say a 
month long each, and one takes twice as long as expected, we will be a month behind 
schedule. If we plan at the level of a week, and a task takes twice as long, we will be a week 

gh-

ng 
I,? 

act Re 
t 

Rev 
0 

iew 

~l 

I 
Business \ 

Req. 
Definit. 

:i: 

I 
Technical :' 
Descript. 

~ Task 1 
., . 

• Top Level = Project 

[ 

i System 
Development 

Project 

: I 
External Tech~ical j t 
Design DeSign 

"0/:'" :.",.,:~: ' 

'I 
I I 

Technical Technical 
Descript. Descript 
Task 2 Task 3 

• Next Level = Configuration Management Phases 

I I 

Build Product 
Test 

I I 
Technical Plan 
Descript. Next 
Task 4 Phase I 

Ins tall 

i 

Criti 
Des 

cal 
ign 
ew Revi 

• Third level starts with task to react to review of previous phase - correct any deviations, 
formally record any concessions 

• The last task on the third level is the Quality Assurance review for that phase 

Configuration Management WBM Figure 3.3 

46 Managing Information Technology Projects 



behind. Obviously there is a trade-off somewhere, since there will be an overhead in the 
planning, monitoring and recording of each task. You should choose a good MUW for your 
project. We suggest that you start with a week (calendar time) - this could represent several 
man-weeks of effort. Next apply the foHowing modifiers to come up with a unit for your 
project: 

Decrease the MUW if 

• Your project is using new technology 

• Your project is risky 

• Your project is extremely critical to the organization 

• Your team (or you yourself) is/are inexperienced 

• The project is under a lot of time pressure 

• The system is very complex 

• There is a high degree of integration required with other systems 

• You are going to make use of several external resources 

• The environment is highly pOlitical 

Increase the MUW if 

• The project is non-critical 

• You are using proven technology 

• You and the team are experienced 

• The project is not very complex, nor tightly integrated 

• You have control over all resources 

• The environment is apolitical and stable 

In any case, the MUW should not be shorter than one day, nor longer than one month. 

Once an MUW has been chosen, the WBS should be decomposed to the level where no task 
exceeds this value. This will have the effect of controlling the degree of formality and 
control on the project - we are balancing the management overhead against the risk of 
slipping. We should also find that small projects result in a small number of tasks (maybe 
20 to 30) while large projects could have several hundred tasks. This counters the problem 
we frequently find with inflexible methodologies which can prescribe hundreds of tasks for 
even a small project. 

Chapter 3 The Work 47 



Case Questions 

MyWay Organizer 

Q3.1 
Develop a Work Breakdown Model for the MyWay Organizer project to 3 or 4 levels. 
(15 mins) 

Q3.2 
Assuming your Work Breakdown Model has a task "Unit test modules". Define this task in 
detail using the guidelines discussed in the chapter. (20 mins) 

Q3.3 
Determine a manageable unit of work (MUW) for the project. Assume: 

You are an experienced project leader with 10 years experience, the last 4 in the PC 
environment 

• You have a young team of three good analyst programmers 

The specification is well developed and understood 

• Only one of your team has developed in the exact environment (compiler, editor, 
operating system) before. The other two have used the language before, but in other 
environments 

• Success of the project is critical to the organization 

• You have tight deadlines, but will receive the full backing of management. Funding 
is not really a major issue, as this is regarded as a top priority project 

(10 mins) 

G learn Stores 

Q3.4 
Prepare a WBM for Gleam's project to document the pilot system fully and build training 
materials. (30 mins) 

48 Managing Information Technology Projects 



Q3.S 
Prepare a WBM for Gleam's planned implementation in 20 regional stores as the frrst phase 
of deployment. This should include hardware installation, network installation, data 
conversion and training. (30 mins) 

Handover Trust 

Q3.6 
You have asked one of your project leaders to prepare a draft standard project plan as a basis 
for all the project leaders to use in managing the parallel system development projects 
required. She has produced an indented list representing the tasks and sub-tasks which she 
envisages in the plan. The indentation represents a hierarchy - similar to a work breakdown. 
The list is shown below. Please critique it and correct it where necessary. 

Determine feasibility 
Justify economics 
Evaluate technical options 

Specify requirements 
Model data 

Collect documentation 
Analyze data 
Draw entity model 

Examine existing system 
Interview users 
Draw data flow diagrams 

Define logical system 
Develop logical DFD's 
Design reports 
Design online screens 

Design system 
Database design 

Normalize data 
Draw Relational model 
Add physical access requirements 
Calculate sizing 
Specify physical schemas 

Program design 
Define program requirements 

Design batch flows 
Specify batch process 
Define Job Control 

Write system 
Code programs 
Test programs 

Parallel test with old system 
Prepare data 
Move software to production 

Chapter 3 The Work 49 



Run test 
Verify results 

Take system live 

(45 mins) 

50 Managing Information Technology Projects 



4 The Product 

Deliverables 
Projects are mounted to deliver products and achieve results. Hopefully, what we deliver 
will be tangible and useful. To this end we introduce the concept of deliverables. A 
deliverable is a tangible result delivered when a task is complete. It may take the form of a 
paper model, a report, program code, a computer file, etc. Some examples include: 

• A Data Flow Diagram depicting the scope and boundaries of the system 

An Object Model showing the attributes, derivation and behaviors of classes 

A report on the feasibility of the project 

A library of coded programs 

• The User Operating Manual for a piece of software 

• The installed network components for an online system 

A set of test results for a program 

Deliverables are important, because they are tangible, and thus serve as evidence of 
progress. They also allow us to assess quality of work performed as we proceed. We will 
address these issues further when we cover project control, reporting and quality assurance 
in chapters 11, 12, 13 and 15. 

Each deliverable should have an unequivocal definition. This is essential to allow us to 
measure completeness and quality, as well as to build expertise in the production of 
deliverables. A formal definition also helps to capture the experience gained in projects for 
future use. The definition of deliverables can usually be obtained from your methodology. 
For each deliverable we should know the: 

• Purpose: Why do we need this deliverable - what does it do for us? 

Structure o/the deliverable: Is it a document, file, chart, etc. What is the presentation 
format and medium? 

Chapter 4 The Product 51 



Manner in which the deliverable is used practically (illustrated by an example) 

Validation rules which should be applied in collecting information and constructing 
the deliverable. For example, "all data items used on screen and report prototypes 
must be present in the data dictionary" 

Notation conventions which will be followed in presentation 

Quality standards which can be used to verify that the deliverable has been correctly 
produced and meets the necessary standards 

• Associated tasks which are involved in producing the deliverable. These effectively 
form a cross-reference to the WBM discussed in chapter 3 

Prerequisite deliverables which are needed in order to build this one. These can be 
determined by the data which is required as input to this deliverable 

Tools which support the development of this deliverable, or contain the result 

• Data content of the deliverable to assist in the determination of dependencies 

A sample deliverable definition (for an entity model) from the 111M methodology is shown 
below: 

Deliverable Type 
Entity Model 

Purpose 
To understand the inherent data structures used in the application 
area, the logical business grouping of these, and the inter­
relationships between these groupings. The entity model also 
allows us to verify with users that the analysis group has correctly 
understood many business relationships and issues. Later it will 
serve as input to the design of physical databases, migration 
planning for data conversion and possibly a structure around which 
to begin prototyping. 

Structure 
The entity model contains entities (things about which we wish to 
store data) and relationships between those entities. An entity 
could be a concrete object (or category of objects) e.g. 
FURNITURE, VEHICLE; a type of person e.g. CUSTOMER, 
EMPLOYEE; a conceptual grouping for analysis e.g. PRODUCT 
CATEGORY, REGION; or a record of a transaction of the 
enterprise with external parties e.g. DEPOSIT, SALE, DELIVERY. 

Occurrences or instances of entities must be identifiable by one (or 
a small number) of identifying attributes (key). For example, I can 
tell one CUSTOMER from another by the CUSTOMER-NO 
attribute and one EMPLOYEE from another by the STAFF-NO 
attribute. If more than one attribute is required to identify 
occurrences of the group, examine it carefully, because it may be a 
relationship, not an entity. 

52 Managing Information Technology Projects 



Relationships exist between entities. They are labeled to indicate 
their nature. An example would be a relationship between 
CUSTOMER and ORDER labeled "Places". It is possible for 
entities to have relationships with themselves. For example, the 
entity EMPLOYEE may have a relationship labeled "Manages" to 
itself. This would link together the employee who is a manager with 
those who are managed. Several relationships can exist between 
two entities. For example, between PERSON and POLICY, in an 
insurance model, we might have relationships of "Life Assured", 
"Owner" and "Beneficiary". These would link different PERSON 
instances (records) to a given POLICY instance. 

Validation Rules 
Entities to be shown as square-cornered boxes. All boxes to be 
labeled with entity name in the singular - Client not Clients. All 
relationships to be shown with cardinality indicated and label 
present. 

Notation Conventions 
We use the Martin-McClure standards for representation of entity 
models. This means that entities are shown as square-cornered 
boxes, with the name of the entity written in the box. Relationships 
are shown as labeled lines. The label describes the nature of the 
relationship. Ends of lines indicate cardinalities or ratios between 
the entities connected. A minimum and maximum is indicated in 
each case. A zero is shown as an open circle. One is shown as a 
line at 90 degrees to the link. Many is shown as a crow's foot 
symbol. Labels are above or to the right reading the relationship 
from left to right or top to bottom. Labels to left or above are read in 
opposite direction. 

Example 
A simple entity model is shown in figure 4.1. 

Note that cardinalities can also be expressed numerically, where 
this is significant. For example, a transfer transaction must be 
related to exactly two accounts. 

Quality Standards 
Boxes correct shape. Entity names singular and meaningful to 
business people. All meaningful relationships shown and labeled 
correctly. Cardinalities to be indicated. All entities must have 
specified keys and foreign keys to create relationships. Martin­
McClure conventions followed. No "clones" of entities already 
present in current databases. 

Associated Tasks 
Produce Entity Model. 

Prerequisite Deliverables 
Context Diagram. Project Definition. 

Chapter 4 The Product 53 



Employed 
by 

to 

Operates 

Belongs to 

Operates 

Made through 

Processes 

NOTE: Not all relationships have been labeled 

Sample Banking ERD Figure 4.1 

Tools 
Use IEF entity model diagrammer and attribute maintenance tool. 

Data Content 
Per Entity: 
Entity Name 
Entity Description 
Per attribute: 

Entity Attribute Name 
Prime Key Component (true/false) 
Foreign Key Component (true!false) 

Existing Database Relations 
Relation Name 
Technical En vironment 

Required Retention Period 
Archival Frequency 

54 Managing Information Technology Projects 



WholeERD: 
ERDName 
per Entity: 

Entity Name 
Position 

per Relationship 
From Entity 
To Entity 
Cardinality 

Products 
A concept less common in project management than the Work Breakdown Model, but equally 
powerful, is that of Products. A product can be defined as a collation of deliverables. Our project 
could produce several products. A system development project could produce: 

The working software system including programs, system control language and files 

• User documentation 

Purpose 
Structure 
Validation Rules 
Notation Convention 
Example 
Quality Standards 
Associated Tasks 
Prerequisite Deliverables 
Tool Support 
Data content 

Product Structure Model Figure 4.2 

Chapter 4 The Product 55 



Technical documentation for maintenance and tuning 

• A license agreement for users of the software, setting out legal conditions pertaining 
to the use of the software 

It is critical that we include all expected products in our planning, since this will radically 
affect the scope (and hence required effort and cost) of our project. 

Product Structure Model 
Just as we showed the relationship of detail and summary tasks in the Work Breakdown 
Model, we can show the relationship of products and deliverables in a Product Structure 
Model (PSM) - figure 4.2. This shows the project goal product as the top box, and then 
decomposes each product in turn, until detailed deliverables are shown at the bottom. The 
PSM represents a configuration, since it shows the components which comprise each part of 
the final product. It will be used during planning, but also later for estimating, project 
control, change management, quality management and right through to maintenance, once 
our solution is in production. Most project management tools provide facilities for capturing 
Work Breakdown Structures, but very few have corresponding facilities for Product 
Structure Models. These are sometimes found in CASE tools and Configuration 
Management tools. If these are available, they should be used to capture and track the 
changes to the configuration. Particularly on complex projects, this can prevent a disaster 
where the scope of a change to specifications is not assessed correctly. 

PSM 
WBM 

Task Definition Deliverable Definition 

Associated Tasks 

WBM to PSM Relations Figure 4.3 

56 Managing Information Technology Projects 



Relationship to tasks 
Obviously, there is a relationship between the tasks in the WBM and the deliverables in the 
PSM. For example, the task Develop Data Model will result in the production of the 
deliverable Relational Data Model. The correspondence is not always one-to-one though. 
For example, the single task Perform Functional Analysis may result in the deliverables 
Functional Decomposition Chan and Function Narratives. Likewise, the tasks Develop 
Prototype, Review with Users may result in a single deliverable User Inter/ace Definition. 
The relationships between the WBM and PSM are shown in figure 4.3. 

Chapter 4 The Product 57 



Case Questions 

MyWay Organizer 
04.1 
Prepare a Product Structure Map for the MyWay organizer project. You should include all 
deliverables that will go in the shrink-wrap box. Ignore other deliverables for now. 
(10 mins) 

04.2 
Prepare a Product Structure Map for the deliverables which the company will need to 
support the Organizer product in the field and which will be necessary to maintain and 
enhance the product. (10 mins) 

04.3 
Add to the models from Q4.1 and Q4.2 all the necessary deliverables to track and control the 
project, report to management, and ensure qUality. Think about others you might add to help 
us improve performance on future projects as well. (10 mins) 

Gleam Stores 
04.4 
Prepare a Product Structure Map for all the deliverables (technical and management) 
required of the project to fully document the pilot system and produce a training package. 
(30 mins) 

04.5 
Assuming you have a deliverable called "Test Plan" in the PSM, develop a detailed 
definition of this deliverable using the guidelines in the chapter. (30 mins) 

58 Managing Information Technology Projects 



Handover Trust 
Q4.6 
Using the list of deliverables for the network installation project below, develop a matrix 
showing the corresponding tasks. Structure these tasks into a WBS. (1 hour) 

Network Requirements Definition 
Applications Characteristics Summary 
Transaction Volume Summary 
Technical and Compatibility Constraints 

Network Plan 
Candidate Hardware Technologies 

Cabling 
Routers and Hubs 
Modems and Network Interface Adaptors 

Candidate Software Technologies 
Link Protocol 
End-to-End Protocol 
Network Management 

Compatibility Matrix 
Cost Summary 
Performance Summary 

Pilot Plan 
Cabling 
Network Equipment 
Installation 
Test Plan 
Test Results 

Pilot Installation 
Hardware 
Software 
Public Carrier Contracts 
Management Process 

Installed Network 
Prepared Sites 
Installed Cabling 
Installed Network Equipment 
Public Carrier Contracts 
Service Level Agreements 
Network Management Document 
Network Test Results 

Chapter 4 The Product 59 





5 Resources 

People 
By far the most important resource on the majority of LT. projects is personnel. People will 
consume as much as 80 percent of the budget in a systems development project. Also, they 
are highly specialized, and seldom interchangeable. Great care must be taken to match 
people to tasks to ensure that: 

The person has the knowledge, skill and experience to perform the task successfully 
and productively 

• Staff members are developed and challenged sufficiently so as not to become bored 
(more on this in chapter 18) 

The time of highly skilled (and expensive) staff is not wasted on tasks which could 
have been performed by lesser qualified staff 

Infrastructure 
In order to function, the team will need infrastructure. This includes: 

• Office space 

• Administrative support 

• Access to hardware and software tools 

• Standards and guidelines 

Access to training in required skills 

• Re-usable components from previous projects (or obtained externally) 

• Resources external to the team: vendors, support groups and contract staff 

Chapter 5 Resources 61 



Tools 

Tools used by the team will nonnally take the form of software. These could include: 

• Project management software to assist in the planning, control, tracking and 
management of the project 

System development tools, including programming language support (editors, 
compilers, linkers, libraries, code generators); utilities (file management, sorting, 
system management); end-user tools (QuerylReport writers, spreadsheets, graphics 
packages, etc.) and Computer Assisted Software Engineering (CASE) tools which 
automate modeling and management of a repository of planning, analysis and design 
infonnation 

• Configuration management software to manage the complex set of related com­
ponents which will comprise our final product. The same tools may be employed in 
change management for production systems 

Standards 
Standards are vital to ensure consistency and quality. They relate to the way in which 
procedures are performed, the representation of deliverables, and the way technologies are 
utilized. Some examples are: 

• System Development Methodology which determines the tasks and deliverables for a 
development project 

• Deliverable definitions which determine exactly what information a deliverable 
should contain and how it will be portrayed 

• Programming standards which define how the particular language and environment 
are to be utilized, thus encouraging good practices and discouraging bad ones 

Resource Requirements 
Figure 5.1 indicates the typical profile of resource consumption during a development 
project. The profile for other types of projects will obviously differ. Notice that resources do 
not drop to zero upon implementation. There is usually a period of monitoring and fine 
adjustment once the system is in production. The different types of resources required also 
peak at different times. Analysts are heavily involved up front and during requirements 
definition, less during programming, and heavily again during system testing and 
implementation. Programmers may only be needed when the technical design firms up. 
Project management occurs throughout the Iifecycle, usually peaking in effort with the point 
of maximum resource involvement, and when final testing and installation take place. 

Resource Profiles 
The team will make use of a wide variety of resources both internal and external. Some of 
the more common roles are as follows: 

62 Managing Information Technology Projects 



.... 
! 
E 
;:, 
z 

Resource Histogram 

Executive Sponsor 

Week Number 

Figure 5.1 

This is the most senior userlIine manager sponsoring the project. He is ultimately 
responsible for committing resources and funding and ensuring that business benefits are 
delivered. This person may have limited time to devote to the project, but is essential to lend 
status and confirm organizational commitment to the project. A further role is observing the 
project progress at the macro level to ensure achievement of objectives and minimize risk. 

User System Manager 
This is a member of the client organization who owns the products from the project. This 
person is the primary specifier of requirements and must provide leadership from concept 
through implementation, into production and thereafter. 

Project Leader 
This is normally an information systems professional who is responsible for the successful 
completion of the project through the effective and efficient application of the assigned 
resources. He will manage the project team on a daiJy basis, assign tasks, collect 
deliverables, record progress and ensure that quality is consistently delivered. 

Activity Manager 
An individual reporting to the project leader who is assigned a particular set of tasks or 
deliverables to supervise and manage to completion. 

User Managers/Supervisors/Staff 
These are persons selected by the User Systems Manager to contribute to the definition of 
requirements, installation planning, testing activity, etc. In short, they, together with the User 
Systems Manager, represent the interests of the user community on the project. They are 
normally chosen because of their knowledge of the business processes and because they will 
use the system or facilities provided. 

Information Systems Management 
These persons represent the levels of I.S. management to which the Project Leader reports. 
They should be involved in project planning, feasibility analysis, resource allocation and 
quality assurance. They should be kept informed of project progress and any factors which 

Chapter 5 Resources 63 



may affect the achievement of project objectives. 

JAD Facilitator 
This is a specially trained individual who acts as a consultant and facilitator in the 
application of JAD within the project. This should not be the project leader, as the facilitator 
should have no vested interest. The JAD leader should work under the direction of the 
project leader. 

JAD Scribe 
The scribe supports the JAD facilitator by recording decisions and building models which 
represent the consensus view, using the modeling techniques. This person may be a 
facilitator in training. Where automation (e.g. Integrated CASE) is used within the JAD 
sessions in an interactive way, the scribe will need to be expert in the operation of these 
tools. 

Business Analyst 
These individuals are charged with specifying the business requirements of the new system 
or technology. They should have an intimate knowledge of the industry, the organization 
and the application area. They need not be technical specialists, although they should have 
an appreciation for what is technologically feasible. 

The business analyst should be capable of conceiving the new system in its entirety, 
including the business changes and implications around the computer system. He should 
concentrate on achieving a business system which will optimize the benefits for the 
organization - the computer system should only be a component. 

Where the individuals concerned also have technical skills, they may act in the role of 
Systems Analysts as well. 

Systems Analysts 
These are normally senior individuals who have both a knowledge of business processes and 
information technology. They frequently progress to this position through the technical 
ranks of programming and systems design. They should be skilled in the techniques of 
eliciting and synthesizing user requirements so as to produce complete models of system 
requirements capable of being communicated accurately to system designers. 

AnalystlProgrammers 
Analyst/programmers normally have a blend of analysis and programming skills. They are 
frequently found where high-level languages are employed, especially where prototyping is 
used in the development lifecycle. They generally work with broad user requirements, 
prototype with operational level users to refine these, and then go on to implement the 
production programs which meet these requirements. They normally need to work under the 
supervision of a senior analyst or project leader who coordinates progress within the overall 
system architecture. 

Programmers 
Programmers may have a wide range of experience levels. Junior programmers may be 
"coding clerks" who have a limited set of skills usually related to one particular 
programming language/environment. These coders would be responsible for accurately 
translating detailed specifications from an analyst or designer into a working program. 

64 Managing Information Technology Projects 



Senior programmers may have very highly developed sldlls and be capable of worldng in a 
variety of different technical environments. They may well perform significant design 
activity and may require specifications at a logical level only, since they will perform 
detailed program design. Really good programmers will demonstrate very much higher 
productivity, and the temptation to bog these individuals down in administrative or 
managerial tasks should be resisted. 

Development Support 
This team or individual supports the development personnel in respect of standards, 
guidelines, environment, methods and tool usage. There is normally a technical role in the 
maintenance of a productive development environment, as well as a consultative role to the 
project teams. 

Data Manager/Architect 
This area or individual is responsible for the management of data as a corporate resource. It 
is a business rather than a technical role. Data, like other business resources, costs money to 
plan, design, acquire, and maintain in good condition. Like other business resources, we 
should gain business benefits from the investment in data. Ensuring that adequate 
management takes place to achieve this is the role of Data Management Duties normally 
include: Corporate Data Modeling, Custody of the Corporate Data Dictionary, Maintaining a 
directory of which data resides in which media and locations, coordination of new data 
added through projects to minimize conflicts and redundancy, ensuring that proper 
procedures are in place for the design, capture, validation, updating and maintenance of data. 

Database Administration (DBA) 
This function or person is responsible for the smooth operation, integrity, and efficiency of 
production databases. Development databases may also be managed, but usually less 
formally. The DBA role is highly technical and demands a very good understanding of the 
particular DBMS technology and surrounding/supporting tools, including the Data 
Dictionary. The DBA function may provide consulting/audit services to project teams in the 
area of physical database design. Duties would normally include tuning the databases for 
optimum performance, and performing recoveries when necessary. The DBA function is not 
responsible for the accuracy of data captured into the database, which is a line function, but 
acts as a custodian. 

Facilities Management 
This area or individual is responsible for the smooth operation of the computer environment. 
This could include equipment, maintenance, operations, network, system software, hotline 
support to users, archival and recovery, capacity management, and security. 

Network Management 
This area/individual normaly reports to Facilities, and is responsible for the smooth 
operation of the telecommunications network. This would normally include 
telecommunications equipment (such as terminals, lines, modems, etc.), network operation 
and management software, network configuration, and problem resolution. The function 
will normally work closely with the LT. Architect to ensure that adequate 
telecommunications facilities continue to be provided. 

Capacity Management 
This area or individual is responsible for the provision of adequate hardware capacity to 
meet the needs of the business applications running in the organization. It is normally only 
formalized for mainframe and network components of the infrastructure. Growing business 

Chapter 5 Resources 65 



dependence on minicomputers, workstations, and local area networks is causing these to 
become new areas of responsibility. Duties normally include: Strategic Capacity Planning as 
a parallel activity to Strategic Application Planning; Evaluation of Upgrade and Tuning 
Scenarios; Recommendations with respect to upgrades, technology replacement, and likely 
performance implications of technology choices. The group will sometimes provide 
consultancy services to project teams in the area of performance engineering and prediction 
modeling. 

Information Systems Architect 
This person or area is responsible for ensuring the applications portfolio meets business 
requirements. Application options are normally planned through derivation of business 
requirements by business modeling and examining options for realizing strategic advantage 
through application systems. A key responsibility is ensuring the integration and 
compatibility of applications across the enterprise. Assistance must also be provided to 
business management in selecting high-yield projects and prioritizing these to maximize 
business benefit while minimizing technical compromises. 

Information Technology Architect 
This person or group is responsible for the investigation, evaluation, selection, integration 
and suitable application of technology in solving business problems. They will normally 
architect the overall technical environment within which applications will be developed, 
maintained and operated. 

Quality Assurance Auditor 
This person or group is responsible for identifying non-conformances to established quality 
standards during the execution of projects. He is not responsible for producing a quality 
deliverable - this is the responsibility of the staff member who produces the product. The 
auditor's role is to detect when this has not been done, so as to limit the impact of non­
conformances outside the project. This person typically conducts the reviews at key points in 
the project lifecycle. 

Internal Business Auditor 
This group is responsible for ensuring that adequate controls exist and are applied within 
business processes, including those implemented in computer systems. They must be 
involved in requirements definition to ensure that these requirements are incorporated into 
application systems. 

Software Support 
This area/individual is responsible for the installation, configuration, tuning, upgrading and 
advice on system software products. They need to work with Facilities Management, 
Network Management, and the DBA to ensure compatibility, efficiency and reliability 
across all system software components. 

Project Secretary 
This person serves as an administrative resource to the project team. He may be responsible 
for scheduling meetings, taking minutes, typing, filing, organizing documentation, doing 
project accounting, etc. He may also double in the role of scribe for JAD sessions, with 
appropriate training. Companies traditionally under-resource this area. Even normally 
sensible companies seem to think that it makes sense for project members to act as very 
expensive (and often inefficient) typists, filing clerks and receptionists. 

66 Managing Information Technology Projects 



Project Librarian 
Responsible for the cataloguing, safekeeping and retrieval of project deliverables, 
documentation, and objects (such as program files, test databases, etc.). 

Information Center 
The I.C. normally provides services and support to End Users. It will assist users to access 
data held in systems and databases via Query tools, report writers, and sometimes custom­
written code. It may also assist users to work with professional productivity software such as 
spreadsheets, personal database managers, graphics packages, word processors, etc. These 
are normally employed on Personal Computers (PCs), workstations, or the corporate 
computing facilities. 

The I.e. should not be developing applications which have the potential to become 
departmental or corporate, since these should be handled through the development group 
where professional standards and quality assurance can be applied. Doing these through I.e. 
facilities can lead to lack of integration, unmaintainable systems, capacity/performance 
problems, and business risk. 

Operations 
This area is responsible for the daily operation of the hardware configuration, taking 
securities, running batch work, distributing output, managing media storage, etc. Operations 
departments are normally found in mainframe sites - most smaller systems have little need 
for these activities, and the role is normally fulfilled by a user or I.S. technical staff member. 

Organization Model 
This is a structure familiar to us as an organization chart. If we add definitions for the roles 
of the participants in the various positions, in a similar manner to which we defined the tasks 
in the Work Breakdown Model, and the deliverables in the Product Structure Map, then we 
have an Organization Model. We should be aware of both formal and informal reporting 
channels in this structure, as well as enduring and temporary ones. 

Relationships to Work Model and Product Model 
Each task at the lowest level of the WBM must ultimately be assigned to an individual or 
group for completion. Likewise, each deliverable at the lowest level of the PBM will be the 
responsibility of an individual or group. These responsibilities should be recorded on the 
respective models. 

Task Assignment 
Great care is needed in assigning tasks to individuals. 1.T. people thrive on growth (leMIling 
new things) and challenge (doing difficult things, or performing at a level not attained 
before). This should not be confused with putting people under too much pressure, or asking 
them to perform the impossible. Do not challenge to the point of failure. This will only 
demotivate staff and result in a drop in productivity. 

We should look for tasks which the individual has the potential to perform welL The task 
should be within the scope of the person's skills, aptitudes and capabilities. It may require 

Chapter 5 Resources 67 



some "stretching", but be careful not to overdo it. Experienced senior staff should not be 
given tasks which, to them, are merely routine and offer no challenge. Remember that a task 
which is routine for one person can present a challenge for another. This is where good 
management comes in. If we can assign the task to a person who will: 

Be able to perform it (perhaps with some assistance) 

Learn something in the process 

Enjoy the challenge of the task, and feel a sense of achievement on completing it 

then we have succeeded. 

The Role of a Mentor 
The importance of mentors cannot be overstated. It is an old-fashioned concept in this age of 
specialists and canned training courses, but one which we believe has massive benefits. 
Where a task would be routine for your senior person, but too challenging for a junior, 
assign it to the junior, but under the mentorship of the senior. The junior will feel a great 
sense of challenge and responsibility, but will not panic since help is at hand. The senior 
person would have been bored by the task and is relieved not to have it assigned to him. At 
the same time, he is challenged to see how well he can convey his experience and 
knowledge to the junior and to see how well the latter can perform under his guidance. 
PrOductivity, self-esteem, motivation and quality all benefit. 

68 Managing Information Technology Projects 



Case Questions 

MyWay Organizer 
Q5.1 
Prepare a list of the resources that you anticipate you will need on the MyWay Organizer 
Project. Include roles and non-people resources. (10 mins) 

Q5.2 
Assuming you have an Analyst Programmer role in your team, prepare a job description for 
this person in the context of the organization and the project. (15 mins) 

Gleam Stores 
Q5.3 
Using your (or a provided model) answer for the WBS of the Gleam Stores project to 
document and build training material based upon the pilot system (see question 3.4), prepare 
a matrix to determine what resources you will need to carry out the project successfully. 
Express your resource requirements as a hierarchy showing legs for people and other things. 
Show reporting channels (solid line) in the people hierarchy. "Dotted line" relationships can 
be shown as well (as dotted lines!). (30 mins) 

Handover Trust 
Q5.4 
Examine the Handover Trust case. Document what external resources you might need to 
accomplish the overall objective set by Mr. Renfrew. How would you obtain these 
resources? How could you make Handover self-sufficient in the medium term? (40 mins) 

Chapter 5 Resources 69 



ThoughtWell Books 
Q5.5 
You have been appointed project manager on the ThoughtWell Books project. You have 
available to you within MacroSoft the following resources: 

Joe Blains, an experienced analyst who has worked in networked minicomputer 
environments for the past 8 years. He has 12 year's experience overall, having worked 
initially in a mainframe bureau environment. Joe's particular strength lies in his excellent 
communication skills and good user relations. 

Mary Long, an analyst with some 4 year's experience. Mary has a college degree and is 
bright. She can get a bit detached from the pragmatic everyday issues and detail required to 
make a working system though. She is a good conceptual and lateral thinker. She is a 
bookworm and loves the idea of working with ThoughtWell - she has specifically asked to 
be assigned to the project. 

James Mbangwe is an analyst programmer with extensive Clipper and dBase III (not IV) 
experience. He is very technical and is the person many colleagues go to with their language, 
tools and compatibility queries. He has 9 year's experience, all on personal computers, 
having started on the original IBM PC in ROM Basic. James can be difficult to manage and 
is not always a team player, but performs very well if motivated. 

Chermaine Phillips is a programmer with a computer science background. She has an 
Honors degree with a major in communication protocols. She has been with MacroSoft for 
four years. She previously worked for another system integration house for about three 
years, leaving them because the work was "not technically challenging". Chermaine is 
experienced in c and Pascal programming, and is busy learning Clipper, which she finds is 
"like c in places, but with weird arrays" and "frustrating because you can't get at the 
machine as easily." 

Peter Wilson is an end-user computing specialist. He assists clients in using PC and LAN 
technology to improve the productivity of their staff, particularly managers and knowledge 
workers. He has a very good knowledge of all the popular PC productivity software, 
including spreadsheets, graphics packages, word processing, and end-user databases 
(including dBase IV). He has just completed an internal project at MacroSoft to connect the 
company's LAN to the Internet, thus providing all our staff with e-mail.Net-News and 
World Wide Web access. 

Penny Ohlsen is a mature programmer who has worked her way up from being a mainframe 
operator. She has extensive mainframe background, mostly in COBOL. She also has a good 
knowledge of several TP monitors, and a variety of Relational databases. She has 20 year's 
experience, of which 15 has been in programming. She is an excellent mentor and is well 
liked by the younger staff. Her particular strengths are thoroughness, excellent testing and 
debugging skills, and wisdom gained through hard experience. 

Lars Bontsen is an analyst programmer who recently joined MacroSoft. He has a bachelor's 
degree in business computing and accountancy. He is a people person and very outgoing. He 
has 18 month's experience in industry. His record shows that he works hard and is very keen 
to learn and develop his career. His major exposure to date has been in spreadsheets, the 
Paradox database and some Lotus Notes programming. 

70 Managing Information Technology Projects 



Denise Frentsen is a programmer with about 2 years experience. She has worked mainly in 
c and c++ with some exposure to databases. She is thorough and works well, but is shy and 
does not mix easily with people she does not know well. She has recently completed a LAN­
based order processing system. 

Management has indicated that you can assemble a team of four, plus yourself as project 
manager. You can use a maximum of three senior people. 

Choose your team based upon your understanding of the project, the technical environment, 
the type of application and the backgrounds of the people involved. Give details of the role 
you anticipate for each person in the team. Justify your selections. Give reasons which you 
can use to explain to those not selected why you have not chosen them. (40 mins) 

Chapter 5 Resources 71 





PLC versus SOLC 

6 The Project 
Life cycle 

Most of us are familiar with a system development lifecycJe (SDLC) which prescribes 
various phases and tasks. These normally progress something like this: 

Initiate Project 
Feasibility Study 
User Requirements Definition 
External Design 
Technical Design 
Build (Programming) 
System Testing 
System Installation 

While these are familiar and useful, they are not necessarily comprehensive, or applicable to 
every kind of project. The SDLC specifies the necessary technical tasks for a development 
project. There are many other tasks which are needed to ensure a successful project. These 
include the managerial tasks such as organizing work, scheduling resources, reporting to 
management, liasing with external groups and so on, as welJ as the tasks required to monitor 
risk and assure quality in all tasks performed. These activities normally occur in parallel to 
the technical tasks, but could also be interleaved with them. This means that we need a 
Project Management Lifecycle (PLC) which can be considered an umbrella incorporating 
the SDLC. 

There are also many other types of projects which you will encounter in I.T. These include: 

• Implementing a package 

• An end-user computing development 

• Implementing a technology, for example, a new Database Management System 

Installation of a computer or network 

Converting data from one system to another 

and so on 

Chapter 6 The Project Lifecycle 73 



Each of these will have unique technical tasks and a unique series of events in the lifecycle. 
We need a common framework within which we can handle all the various types of project. 

Generic Lifecycle 
The generic lifecycle presented in figure 6.1 has the advantage that it is consistent for 
virtually all types oftT. projects. This has major advantages, including the following: 

Project Managers do not have to re-invent the wheel for each new project 

The senior management and steering group(s) to which projects report will be able to 
compare projects meaningfully 

• Project reporting and terminology can be consistent in terms of phases and review 
points 

Expertise can be built up with respect to estimating techniques and past performance 

Standard project plans can be built up in tools, needing only slight modification to 
provide a solid, comprehensive plan for a new project 

The lifecycle presented is adapted from one proposed for Software Engineering projects by 
the Institute for Electrical and Electronic Engineers (IEEE), built on the concept of 
Configuration Management. This approach has proven successful in handling some very 
large and complex projects. In system engineering and aerospace, it is not uncommon to be 

Project Lifecycle 

( Schedule J 

( 
( Collect 

Results 

.(~-----"C-h-'ec-k--~ 
_ Quality 

( Assess 
Progress 

74 Managing Information Technology Projects 

Until All Tasks 
Are Complete 

/Per Phase 

Figure 6.1 



creating software and hardware at the same time. The systems are thus being designed to run 
on hardware which is itself at the design stage! When one considers the complexity of the 
software which might be several hundred thousand lines of assembler code, one gains an 
appreciation for the difficulty of the task. 

But wait, you say, isn't this all getting too formal and too rigorous, and too expensive? I 
don't want to launch missiles, or navigate airliners, all I want to do is install a business 
application. In the past, we have got by without much in the way of formal project 
management, haven't we? Yes, and what a sorry record we have to show for it! Look at the 
number of projects which have not met requirements, were delivered late, or ran over 
budget. Look at the current levels of system maintenance in our organizations - typically 
between 70 to 80 percent. Now think about the increasing complexity of the systems which 
we are tackling, and their increasing criticality to the organization. Maybe a little fonnality 
will save a lot of tears later. A recent sunrey we conducted including more than 29 business 
system projects found a surprisingly high average size of 439 man months. At an average 
cost of $3000 per man month, this is an average cost of over $1.3 million per project - these 
are hardly tiny or cheap projects. 

Realistically, though, can we have a formalized lifecycle and still accommodate modern 
approaches like prototyping, Joint Application Development (JAD) and Rapid Application 
Development (RAD)? Yes, we can. What we need to do is to contain the techniques and 
iterations to within the phases, rather than across the lifecycle. It is also possible to allow 
iterations through a few phases if we wish, but this requires very careful management, and 
increases risk. 

Discussion of the Lifecycle 
The project begins with the initiation phase already discussed in chapter 2. Here the scope is 
defined, goals are set out and the participants identified. 

Following this, there comes the feasibility study and planning (see previous page). Parallel 
to these, and central to their success is the estimating activity. Once the feasibility is 
established, approval obtained, and the initial plan set up. the project can begin in earnest. 

For each phase that follows, there is a common structure incorporating the following steps: 

Repeated for all tasks designated in the Phase: 

• Schedule the tasks in detail. This will normally involve consulting the methodology 
in use for the type of project being tackled, and adjusting this for the specific 
project's unique characteristics. Technical dependencies between tasks need to be 
understood. For example, we cannot install computer hardware until the premises 
and power are ready. 

• Next, we obtain any new resources required to carry out the tasks. These may be 
people or other resources such as equipment, tools, etc. 

• We then allocate and execute the tasks, collecting the work results (deliverables) as 
these are produced. Each of these should be quality assured before being accepted as 
complete. 

Chapter 6 The Project Lifecycle 75 



• By counting completed, quality-checked deliverables received, we can monitor our 
progress on an ongoing basis. 

We will repeat the above cycle until one of two things happens: Either all tasks for the phase 
are complete or we reach a mandatory reporting deadline (e.g., we are required to report to 
the steering committee every two months). When either of these occurs, we then prepare and 
present the necessary report information in as concise a way as possible. 

At the end of the phase, we plan the next phase in detail, including re-estimating tasks, since 
we now have a much better understanding of what they will involve. We then conduct a 
formal review with our sponsors and an outside auditor/facilitator. This is to ensure the 
technical qU(llity of the work produced as well as to ensure that the project is still meeting 
business goals, and indeed, that we are aware if these may have changed. 

We can then move on to the next phase. When all phases are complete, the project 
terminates. This could also occur prematurely at any interim review if insurmountable 
problems are encountered. 

In succeeding chapters we will cover each aspect of the framework and elaborate on the 
concepts introduced above. 

76 Managing Information Technology Projects 



Case Questions 

MyWay Organizer 
Q6.1 
Integrate the activities for the MyWay organizer system development project into the 
generic project management lifecycle. You can assume a MUW of one week. Your 
management require a monthly report of progress. Present your answer as a list of activities 
in time sequence. (20 mins) 

Handover Trust 

Q6.2 
Using the list of activities below for the installation of the Handover Trust network:, merge 
these with the generic project lifecycle. Include all necessary management and quality 
assurance tasks in addition to the technical tasks. Your answer should be in the form of a 
Work Breakdown Structure. (45 mins) 

Define Network Requirements 
Summarize Application Characteristics 
Determine Transaction Volumes 
Determine Technical and Compatibility Constraints 

Plan Network 
Select Candidate Hardware Technologies 

Determine Cabling Options 
Determine Router and Hub Options 
Determine Modem and Network Interface Adapter Options 

Select Candidate Software Technologies 
Determine Link Protocol Options 
Determine End-To-End Protocol Options 
Determine Network Management Options 

Prepare Compatibility Matrix 
Prepare Cost Summary 
Do Performance Summary 

Devise Pilot Plan 
Plan Cabling 
Plan Network Equipment 
Plan Installation 
Plan Test Plan 
Plan Expected Test Results 

Install Pilot 
Install Hardware 
Install Software 

Chapter 6 The Project Lifecycle n 



Conclude Public Carrier Contracts 
Implement Management Process 

Install Network 
Prepare Sites 
Install Cabling 
Install Network Equipment 
Conclude Public Carrier Contracts 
Draft Service Level Agreements 
Write Network Management Document 
Collect Network Test Results 

78 Managing Information Technology Projects 



7 Estimating 

Project Success 
In chapter 2 we defined project success as meeting requirements, delivering on time, and 
remaining within budget. We also talked about establishing the feasibility of the project, and 
choosing the right projects to support the business strategy. None of these can be achieved 
unless we develop realistic estimates of cost and delivery date. As can be seen in figure 7.1, 
estimating is essential at the early stages of the project, but is revisited at the end of each 
phase. 

C . Initiate J 

Project Lifecycle 

Collect 
Results 

Check 
Quality 

Assess 
Progress 

Until All Tasks 
Are Complete 

/Per Phase 

Figure 7.1 

Chapter 7 Estimating 79 



Unfortunately, estimating information systems projects is a very thorny issue, and currently 
as much of an art as a science. To estimate accurately, we would need the following factors: 

The size of the job being tackled 

• The productivity that can be expected (i.e., how quickly can we perform the work?) 

The resources available to us 

The environment and constraints under which we will work 

An Analogy 
A construction manager planning a building project might do a calculation like this: 

Requirements 
200 meters of foundation 
200 meters of wall, 3 meters high 
3000 square meters of roofing 

Productivity factors: 
Foundations: 10 meters per personday 
Walls: 50 bricks per square meter 

Bricklaying at 400 bricks per personday 
8 square meters per personday 

Roofing: 50 square meters per personday 

Effort involved in project: 
Foundations: 200 110 == 
Walls: 200 x 3/8 == 
Roofing: 3000 I 50 == 
TOTAL 

Calendar time for project: 

20 person days 
75 persondays 
60 persondays 

155 persondays 

Resources: 2 people for foundations 
5 people for walls 
4 people for roofing 

Calendar times: 
Foundations 2012 = 
Walls 75/5 = 
Roofing 60 I 4 = 
TOTAL 

10 days 
15 days 
15 days 
40 days 

Assume 5 productive days per week 
Total calendar time = 40 I 5 = . 8 Weeks 

Cost of project (excluding materials) 
Assuming labor at 600 per personday 
Cost: 155 x 600 = 93000 

80 Managing Information Technology Projects 



Unfortunately, as software engineers, we do not have the same lUxury. Let's look at each 
aspect in turn: 

The size of the project is largely unknown until we have completed the analysis 
phase, by which time we may have done a third of the total work required. Even 
then, we cannot be totally sure, as there may be unforeseen issues in the technical 
design, or the requirements may change during development 

• Productivity norms are sadly lacking. Some measurements are available, but 
different studies conflict, and the range of values is enormous. Furthermore, many 
factors unique to the project; e.g., the person performing the job, and the technology 
used, can have drastic effects on productivity achieved . 

• We seldom know at the outset what resources will be available to us. We may be told 
that "you will have four programmers when you need them", but this mayor may not 
be the case. The actual resources could have vastly different productivity from that 
expected 

• The environment under which we work is constantly changing with new tools, 
technology, techniques and approaches. We never stabilize things long enough to be 
able to collect the measures that we need for better estimating next time! It is like the 
construction engineer using a new type and shape of brick each time 

Estimating Dilemma 
We thus have the picture shown in figure 7.2 - garbage information in, and useless answers 
out. 

How can we improve this situation? A better scenario would be to collect the information 

Garbage 

Estimating Dilemma 

r-------~ 

Estimating 
Process I-----~)I ... Garbage 

Figure 7.2 

Chapter 7 Estimating 81 



that we need, building a database of norms which we could use when faced with future 
estimating exercises (see figure 7.3). But, you say, this would take us a long time, and we 
can't keep things stable just to collect some figures - especially when the new techniques 
promise higher productivity and we have a huge backlog of requests. 

Empirical 
Database 

Cost 
Projection 

Quantum Indicatio~:"~~~··'C'· ~~~~~~rr" 
of Scope, Complexity, 

Team Productivity 

Estimating - A Better Scenario 

Projected Value 
e.g., Effort 

Figure 7.3 

The truth is that empirical evidence shows that very few of the techniques which promised 
vastly greater productivity over the years actually delivered on that promise. Some of the 
most productive shops around are still using COBOL '74. Consider figure 7.4 from the 
respected consultants Nolan and Norton. 

According to their study, the biggest increase in software productivity was the change from 
machine code to assembler. Everything else since then has had only a marginal effect. 
Maybe we can afford to stabilize a little and collect some data. Still in a hurry? Fortunately, 
a lot of useful data has already been collected by various researchers. We will take a look at 
some of these figures a little further on. First we need to establish some foundations. 

An Estimate Is 
The popular view of an estimate can be gauged from the following scenario: 

Arriving at the office one morning, you bump into the AGM Marketing in the lift. On the 
way up, she asks you, "How long it would take 'you guys in systems' to develop a Sales 
Analysis system?" You think a bit, and off the top of your head, say, "About six months." 
What have you done? You do not know the size of the system, what the requirements are, 
what resources we can expect or anything else usefuL But most things take about six months 
in our optimistic world view, unless we have tried them before and know that they are more 
complex than we thought. 

By lunch time, you have given it some more thought: There will need to be an interface to 

82 Managing Information Technology Projects 



1950's Input Output Control Systems/Assembler/Machine Code 

1960's 3GL Programming Languages + 8% per annum 

1970's Modular Programming & Database + 3 - 6% per annum 

1980's 4GL Programming & CASE + 1· 2% per annum 

1990's 00, Re-usability, 5GL No figute yet available 

Source: Nolan/Norton 

Improvements in Software Productivity due to Technology Figure 7.4 

the Point of Sale system which is in a nasty old technology; there will be some tricky 
communications stuff to get the data into head office; and the performance of the analysis 
system will have to be very good since you have very little time left in the overnight batch 
slot. Maybe nine months is more like it? You see her at lunch and tell her. She goes white -
she told the board this morning that they could have it in six months, and now, before we've 
even begun, you say it's going to be 50 percent late. 

You were guilty of giving the answer the person would like, not a real one. The estimate you 
gave was the smallest number with a non-zero probability oj coming true. What we need to 
do is become more professional. If you consult a structural engineer and ask for a quote for a 
bridge the answer will depend on the nature of the job, the terrain, the weight the bridge 
must carry and other factors, not on what you would like to hear. We have to give real es­
timates. An estimate is a prediction which is equally likely to be above or below the actual 
result (see figure 7.5). If you had quoted a wide range based upon the level of information 
that you had (say 6 to 12 months) the AGM would have understood the term "estimate". She 
may have asked you for something more definitive, and you should then have said: "I will 
need more information to develop a more accurate estimate. Would you like me to invest 
some effort in this?" 

Certainty versus Project Stage 
As mentioned earlier, we have to go some way into the project to understand its scope fully. 
It is thus impossible with systems projects to give exact estimates at the start - we simply do 
not have the information available. Our early estimates are likely to have a wide margin of 
error, and we must quote a range. Only as we gain real data on which to base later estimates 
can we firm these up. This is illustrated in figure 7.6. 

We thus need to do estimates at several levels: 

• At the strategy level - Macro estimates which allow us to compare potential projects 
one against the other. A high degree of accuracy is not required, but the estimates 

Chapter 7 Estimating 83 



An estimate is the most optimistic prediction with a non-zero 
probability of coming true (Common mistake) 

Duration or Effort 

An estimate is a prediction which 
is equally likely to be above or 
below the actual figure (Correct) 

An Estimate Is ... Figure 7.5 

must give a relative cost and duration to allow sensible selection of projects 

• At the feasibility stage - A somewhat more accurate macro estimate after the project 
objectives and scope have been firmed up and we have an idea of potential technical 
environments and resourcing. This needs to be accurate enough to allow a 
costlbenefit decision to be taken as to whether to proceed with the project 

Once feasibility is established, and we begin the project, we need an estimate per 
phase of the project. These estimates will be firm for the next phase, but soft for later 
phases. As we complete a phase, we will re-estimate in detail for the next phase, and 
revisit our soft estimates for later phases 

In addition, we may need to do micro estimating for individual tasks and deJiverables 
within the current phase. For example, we may need to estimate the development 
time for each program when assigning these to individual programmers 

Multiplier 
4 ~-------'---------r---------r-------------------,-------' 

2 

1 

Initiation Specification External Technical 
of Requirement Design Design 

Stage 

Certainty Versus Project Stage 

84 Managing Information Technology Projects 

Build & 
Test 

Installation 

Figure 7.6 



At each of these levels we may have different information available to us and may thus need 
to use different techniques. We will explore these after establishing a suitable background. 

Factors Affecting Effort and Duration 
There are a great many factors which influence the effort and elapsed time for a software 
project of a given size. These include: 

• Complexity. We intuitively understand that something simple will take less time to 
do than something complex. A report program from one file will be less difficult to 
develop than a real-time online multi-file update. McCabe, Halstead and other 
authors have proposed metrics for complexity. Unfortunately many of these can only 
be calculated after the design (or sometimes even after the code) is complete. 
Nevertheless, it is interesting to see what the range of values can be, i.e., what 
influence complexity can have on the development effort. Complexity measures 
have been found to be closely correlated with the number of source statements in the 
product produced. The measures can assume a wide range of values, with no 
apparent maximum. It is important, however, to remember that increasing 
complexity is always associated with more effort, and higher fault rates 

Skill of team members has a major influence on the effectiveness of effort applied. 
One progranuner may write in one day what will take another several days. Studies 
indicate a 1:7 ratio between best and worst performers. Some studies indicate a 1 :20 
ratio. These figures are startling. There seems to be at least an order of magnitude 
difference between inexperienced novices and top performers. What is also 
extremely interesting is that the variation seems to be less among individuals than 
among environments. This may be because certain organizations have superior 
environments allowing the people there to perform at a higher level, or it may be that 
high-achievement environments attract more high achievers 

• Elapsed time of project/degree of specification change. The longer a project runs 
before delivering its final results, the more likely it is that the environment or 
business conditions will change during the lifecycle. This leads to changes in 
objectives, requirements and constraints. All of these need replanning, 
respecification, redesign, redevelopment, retesting etc. Everything with a "re" in 
front of it means it is costing us time and money to redo something which we had 
already completed or begun. Short projects are much less likely to encounter large 
specification changes. Practically, we should try to keep each chunk that we develop 
to no more than 9 elapsed months from specification to delivery. 

• Staff turnover. Loss of key staff members can significantly impact project schedules 
and costs. There is an inevitable learning process for the new staff member, and a 
loss of experience that goes out with the old staff member. There is also the effect on 
the team which has adapted to working as a group and will now have to go through 
that process again. The lost productivity is reflected in longer schedules and higher 
costs see figure 7 .7. The project may also incur additional costs by carrying both 
staff members during a handover period to try to minimize the problems mentioned. 
Risk is increased due to the possibility of loss of information and expertise 

Productivity measurement figures show that a small amount of staff turnover (up to 
10 percent per annum) is actually healthy as new skills and perspectives will be 
brought into the group at a rate which is not disruptive. Higher levels of staff 
turnover can result in a loss of productivity as shown in the figure 

Chapter 7 Estimating 85 



+75% 

+50% 

+25% 

0% 
- 5% 

Effort 

10 20 

Change in Effort versus Staff Turnover 

Turnover % 

30 40 50 

Figure 7.7 

• New methods/techniques/technology. While we frequently adopt these in the hope of 
increased productivity, the truth is that they often negatively impact productivity and 
increase risk on the first projects where they are applied. The relative productivity 
figures quoted earlier indicate that we should be skeptical of claims made by vendors 
for dramatic productivity improvements through technology 

For example, 4GLs were claimed to "cut development time to a third" and the like. 
Even if the claim were true, the improvement would apply only to the programming 
component of the lifecycle, which is about 20 percent of the total project time. So, if 
we saved two-thirds of this, we would still only save 13.4 percent on the whole 
project. The analysis, design, training, documenting, implementation and other 
aspects of the project remain lUlaffected. These benefits would also only be achieved 
once the team were fully conversant with the new technology 

Two technologies now being adopted hold real promise of increased productivity and 
shorter project durations. These are Integrated CASE (I-CASE) in support of 
Information Engineering (IE) and Object Oriented Technologies (OOT). We should 
be aware, however, that to attain these benefits, we will need to have in place a 
disciplined, managed development process and methodology as well as the skills to 
manage and utilize the technology correctly. Just as putting a piano in a room will 
not create a concert, so plugging a tool into an organization incapable of utilizing it 
correctly will not produce faster development 

Size of team. Common wisdom from the construction and engineering diSCiplines is 
that we can shorten projects by adding more resources. A typical question is "how 
many people do you need to get it done by the New Year?" UnfortlUlately, this relies 
on the assumption that the work is easily divisible and that resources are easily 
interchangeable and roughly equally productive. These assumptions are not true for 
system development projects. Firstly, the resources on a team need to communicate 
with each other. This adds an overhead for each additional member. Second, the 
tasks are not always easily divisible. Third, we have seen that resources can display 
very great variation in productivity 

As can be seen from figure 7.8, each additional person adds another interface and 
corresponding communication overhead to every member of the team. As a rough 
rule of thumb, when we were managing package development projects, we used to 

86 Managing Information Technology Projects 



Team Number of Effort 
Size Interfaces Multiplier 

0 0 

0-0 2 1 ea 2 total 1.26 

~ 4 3 ea 12 total 1.59 

7 6 ea 42 total 1.91 

Source: Tetrarch 

Effect of Team Size Figure 7.8 

deduct 10 percent productivity from everyone on the team for each new member. 
This means that by the time the team reaches 10 strong, no one is doing anything 
else but talk to each other! This may be cynical, but you can almost watch it 
happen. 

A mathematical prediction from the proprietary Tetrarch methodology calculates 
the overhead at n to the power 113, as shown in figure 7.8. 

This communication overhead can be reduced in several important ways: 

- Using small teams with high levels of skill 

Breaking the task up into manageable chunks with minimal interaction 
between them - this is the role of a system architect 

- Using highly structured, graphical specification and design techniques 
which reduce the communication problems between team members and 
between teams 

- Using development methods, such as Object Oriented Analysis and 
Design, which reduce the number of translations between different 
models and representations 

• Development environment/language (despite our skepticism) can have a major 
influence, particularly on the build phase of development projects, but also on the 
speed with which system maintenance can be safely carried out. What we need to 
avoid is applying the productivity improvements to the whole project estimate -
typically we will not see a major effect there. In our experience, it is the total 
environment, rather than the specific language syntax which makes the most 

Chapter 7 Estimating 87 



difference. A COBOL environment with good supporting tools, a library of useful 
functions, and standard program structure skeletons can be just as productive as a 
good 4GL environment. Graphical, object oriented development environments with 
purpose-buiIt editors and browsers, and a very rapid modify/test cycle, such as 
Smalltalk, can display very high productivity, even though the language itself may 
seem somewhat cryptic. 

Do not interpret the comparative numbers from table 7.1 as time per function point, 
however, since it may take just as long to write 20 lines of Smalltalk as it does to 
write 300 lines of COBOL. Benefits do occur in reduced complexity, and testing and 
maintenance effort, however. 

We Sh0Uld also realize that maturity and level of experience with the environment, as 
well as non-technological factors, have a major effect on productivity, rather than the 
particular tool or product. In our experience, we have had teams which were 
producing over 200 lines of debugged working COBOL code per person per day. 
These figures are far above the industry norms of around 20, but were achieved with 
a highly motivated, highly skilled team in a supportive management environment 
and using a lot of home-grown utilities to customize and optimize our development 
environment 

• MotivaJion oj team members can have a major influence on the productivity 
achieved. We will examine the whole subject of motivation in chapter 18. Suffice it 
to say that attitude and motivation level alone can have a significant impact on 
productivity achieved, all other factors being equal 

• Time pressure. This is an area where systems projects differ radically from 
construction projects. Common sense tells us that the more resources we add to a 

Assembler 
C 
Algol 
COBOL 
Fortran 
Pascal 
RPG 
PL/1 
Modulal2 
Prolog 
Lisp 
Basic 
4GLlDBMS 
APL 
SmallTalk 
Query Languages 
Spreadsheets 

Source Statements per Function Point - Fenton 

88 Managing Information Technology Projects 

320 
150 
106 
106 
106 

91 
80 
80 
71 
64 
64 
64 
40 
32 
21 
16 
6 

Table 7. 1 



project, the faster we can complete it. Unfortunately, this does not occur with system 
projects. To quote Fred Brooks, a manager of one of the largest system projects of all 
time, the development of the IBM System 360 Operating System (which eventually 
evolved into MVS): 

"Adding resources to a late software project invariably makes it later." 

Is this true? Does it really happen, and if so why? Norden of IBM collected data on 
over 2000 projects and built a database with a view to better understanding the 
behavior of the software development process. Work by Norden and Larry Putnam 
shows that the relationship is indeed true. It appears that the minimum effort 
expended on a project occurs when we have only one resource, no communication 
difficulties, and no rework. As we add resources, we increase communication 
overhead, communication failures and consequently rework. There is actually a point 
at which adding more resources will negatively impact the total delivery rate. There 
is also a minimum possible elapsed time for a project. Any number of resources will 
not make the project achievable in less time. This holds very important messages for 
how we design, estimate and staff our projects as well as how we do our cost/benefit 
calculations. We will discuss the NordenlPutnam model in more detail later 

Quality and documentation requirements affect the time and effort of projects 
dramatically. This can be easily seen in systems engineering projects building safety 
critical systems such as air traffic control support, or nuclear power plant 
management software. The validation and verification effort can sometimes cost 
more than the development effort. 

In commercial systems, we have in the past not been too worried about quality and 
reliability, since our systems were not mission critical. However, many have now 
become so: What would happen to a modern bank if the national ATM network 
posted things to the wrong accounts, or just decided to hold client cards at random? 

Techniques for Estimating 

Determining the Size of the Job 
Our first step in estimating is to determine the size of the job we are tackling. This involves 
several things: 

Having a clear definition of what it is we are trying to achieve 

Establishing a clear boundary (or scope) which details what is and what is not 
included 

• Understanding our terms of reference and constraints 

• Trying to obtain a measure of the size of the product we are expected to deliver 

The first three steps deal with the project goal and objectives; the scope and context of the 
project, and the terms of reference. We have dealt with these already in the chapter on 
Project Definition. 

There are several techniques which we can use to try to gauge the size of the project. Before 
we do that, let us step back and look at the measurements available to express the size of a 
computer system. 

Chapter 7 Estimating 89 



Three major measures are used: 

Lines of Source Code (SLOC) 

DeMarco's BANG 

Function Points 

Lines of Code 
The easiest measure after the event is lines of code - all we have to do is run an editor 
against our source library and let it count them for us. This is a popular measure, probably 
simply because it is so easily available. Unfortunately, it suffers from many shortcomings: 

It is highly language and environment specific. 1000 lines of COBOL is not the same 
as 1000 lines of Clipper or Fortran, and may not even be the same as 1000 lines of 
COBOL on another machine or operating system 

Lack of counting standards. What do we count - source lines in the editor, or source 
instructions? What about comments? What about included routines or data 
definitions which appear more than once? Do we count them every time, or only 
once? Some texts refer to KNOCSL (kilo non-comment source lines) as a measure. 
Attempts have been made to standardize on a measure called Effective Source Lines 
of Code (ESLOC). This usually works as follows: 

Write one instruction per line where possible. If an instruction (e.g., an IF­
THEN-ELSE or CASE) needs several lines, then place each condition or 
action on a separate line 

Include full-line comments in the count, but not where these only create 
spacing 

Ignore partial-line comments 

Count library code and data definitions which will be re-used in many 
programs once. Count the lines which include or invoke this code 

Utilities are available to scan source libraries and calculate counts based on a consistent 
approach. 

SLOC's are only available after the fact. Source lines only exist to be counted after 
we have written the code. This is very late in the project, and useless for a 
meaningful costlbenefit analysis 

The measurement of source lines encourages verbosity. "Be careful what you 
measure, some damn fool will try to manage it ... " A long program which ac­
complishes the same task as a short one is probably not as well designed, efficient or 
maintainable. If we measure source lines, we may regard the better programmer as 
less productive 

BANG 
This is a measure developed some time ago by Tom de Marco. It attempts to assign a 
functional "weight" to the system, independent of the implementation technology or 

90 Managing Information Technology Projects 



language used. The name probably stems from the amount of "Bang for the Buck". De 
Marco gives two forms of the measure, one for "function rich" and one for "data rich" 
systems. Function rich systems are those which perform a lot of processing, or data 
transformation. Data rich systems are those which are mainly concerned with management 
and use of complex data structures, e.g .• a Decision Support system. The former is based on 
a dataflow (Le., process) model, and the latter on a data model. While these measures were 
temporarily out of vogue, we may see a resurgence of their use in I-CASE environments. 
since their computation can be automated where specifications are in machine-readable 
form. 

Fu nction Poi nts 
This technique was frrst developed at IBM by Albrecht. It was initially used as a 
productivity measure, and subsequently for sizing and estimating. It is similar in concept to 
BANG, in that we develop a functional weight for the system, regardless of implementation 
technology. We try to calculate what functionality the system is delivering to the end user. 
Various aspects such as number of inputs and outputs, number of files maintained, number 
of updates, etc., as well as their complexity, are taken into account. Using these and 
weightings derived from measurements of previously developed systems, a raw Function 
Point count for the system is calculated. This is then adjusted with weighting factors such as 
complexity, deadline pressure, performance constraints and so on. These adjustments 
produce an adjusted function point score which is then used to determine productivity 
(FPJManmonth of effort) or estimate elapsed time. The latter assumes we know how many 
function points per manmonth of effort we can deliver. This presumes some prior 
measurement in our own situation, or that we have obtained suitable starting figures from a 
site (or sites) similar to our own. 

As a measurement tool, Function points has a number of advantages: 

It is technology and language independent 

It is much easier for users and nontechnical managers to relate to than lines of source 
code. They can meaningfully compare the size of two projects without requiring 
programming background 

• It can be calculated earlier in the project - typically once the requirements definition 
or prototype is complete 

There are standards for how function points should be calculated, published by the 
International Function Point Users Group (IFPUG) 

There is a wide body of knowledge available concerning the range of productivity 
measured in Function Points for languages, environments, application areas and 
industries. This helps organizations who do not have their own collected data to get 
meaningful figures to start with more easily and quickly 

Unfortunately, there are still some limitations we should be aware of: 

• Function Points tend to have a Mainframe! Character Terminal! Centralized systems 
view of the world and are difficult to apply to Graphical User Interfaces, LAN 
systems and Client Server applications. The IFPUG does, however, try to adapt the 
approach to cater for new technologies 

Chapter 7 Estimating 91 



Function Points are impossible to calculate, and difficu1t to estimate until the full 
Requirements Definition, and preferably External Design, is complete 

Like SLOe, we tend to get what we measure. With function points this will not be 
more lines of code to implement a given function, but rather extraneous functions 
which do not necessarily have business value 

With the advent of business process re-engineering, we shou1d have as our goal the 
simplest systems which will support the effective running of the business. Using 
FPA we may give credit for reports which merely entrench old and inefficient ways 
of doing things 

Even with the limitations mentioned, Function Point Analysis is still probably the best 
measure we have for comparing the size of systems meaningfully. There are also guidelines 
to allow us to use the technique in a systems maintenance context. 

Calculating Function Points 
If this is a development or maintenance project, you shou1d calculate function points as soon 
as you have the following information: 

The inputs and outputs (Screens, reports, files) to the system are defined 

Interfaces to other systems are defined 

• The logical data base (conceptual schema) for the system has been defined 

The target environment has been chosen 

The form in figure 7.9 shows the basis for calcu1ating function points. Proceed as follows: 

• Record the number of inputs to the system. These include: Screens, parameters 
accepted, and any inputs from special devices such as a bar code scanner. Rate these 
as simple, average or complex 

• Record the number of outputs from the system. These includes reports, outputs to 
special devices such as a bar code printer, etc. Rate them as simple, average or 
complex 

• 

• 

• 

Record the inquiries to which the system will respond. These may be made in batch 
or online mode. Rate as simple, average or complex 

Record the number of files (or database relations/tables) maintained by the system. 
Rate them as above 

Record the interfaces with other systems, e.g., parameters passed to service modules, 
records read from a temporary file, etc. Rate as before 

Multiply each category by the prescribed weighting, and add together giving a total 
unadjusted function point score 

Next, rate each of the adjustment criteria on a scale of 0 (no influence) to 5 
(critical/major influence). Add all of these scores giving a total degree of influence 

92 Managing Information Technology Projects 



C Function Point Calculation) l 
Project Estimator Il ----------------------- ~ 
Comments ___________________________ _ 

II 

Date Adjusted FP Count D I '----------- ------ ,.' 

Raw Function Point Count 

Complexity Total 

Simple Average Complex 

Inputs ___ x 3 _x4 6 

Outputs _x 4 _x 5 7 

Inquiries _x 7 _x10 _x15 

Files _x 5 7 _x10 

Interfaces _x 3 _x 4 _x 6 

Total Unadjusted Count A ~~ 
<-

Adjustment Factors i~ 

Factor Influence (0-5) Factor Influence (0-5) .,i.I:'! 

Data Communications Online Update .. 

Distributed Functions Complex Processing 

Performance Reusability 

Heavily Used Config. Installation 

Transaction Rate Operational Ease 

Online Data Entry Multiple Sites 

End User Efficiency Facilitate Change 

Total Degree of Influence 

Adjustment Factor = B/1 00 + .65 

I Adjusted Function Point Count = A x C D t 
Function Point Calculation Figur& 7.9 

Chapter 7 Estimating 93 



Calculate the adjusunent factor as follows: 

.65 + (0.01 • degree of influence) = Complexity Adjustment Factor 

Calculate the final Function Point Measure as follows: 

Unadjusted FP count * Complexity Adj Factor = Final FP Count 

How you decide whether an input is complex, average or simple can get fairly involved and 
is beyond the scope of this text. For full details consult Albrecht or the IFPUG 
documentation. 

Unless management and non-technical tasks have been included in the FP project history 
figures, function point counts will help us to estimate only the technical tasks in the project. 
Other techniques (e.g. Delphi, analogy, history) can assist in estimating other tasks. 

Other Techniques 
There are a number of techniques which we can use to help us obtain estimates of size, 
especially early in the project. 

The Wideband Delphi Technique 
Developed originally at the Rand Corporation, this technique draws upon expert opinion 
and assists in reaching a consensus view. A summary of the process is shown in figure 7.10. 
AppJied to estimating, it works like this: 

Several experts who can meaningfully estimate the task at hand are located 

As much information as is available is provided to the experts to peruse 

• The experts meet under control of a chairman. Each expert writes down, without 
discussion, his or her estimate. These are collected by the chairman 

Usually, there will be a majority whose opinions differ only slightly. There may be a 
small number who disagree and provide estimates which are much higher or lower 
than the majority opinion 

• The chairman asks those who differ to explain their viewpoints to the group 

All members write down new estimates, and these are collected again. Depending 
upon the strength of the arguments presented by those who differed initially, the 
majority opinion may shift up or down 

The process is repeated (usually three to four iterations are required) until the 
estimates are no longer being changed - i.e. the majority opinion range is not getting 
smaller 

For situations where there is a high degree of certainty a very narrow range of 
estimates should be achieved. Where there is more uncertainty, a larger range will be 
present in the final answers, and more iterations will not cause them to converge. 
This is healthy and can be used as a confidence-level indicator. For example, if the 
range is unacceptably large to management, this is an indication that too little is 

94 Managing Information Technology Projects 



Coordinator provides experts with specification 

Meeting is convened to obtain estimate 

Experts independently make estimates 
and give them back to coordinator 

Coordinator examines results and tells 
each expert only the median 

Wideband Delphi Technique 

Repeat until 
consensus 
reached or 
estimates 
do not 
converge 

__ ..-l any further 

Figure 7.10 

known about the problem, and further information should be gathered before 
committing to an estimate or decision 

Work Breakdown Structure 
We saw earlier that the WBS is a valuable tool in designing our project. It can be very 
valuable in estimating too. The idea is that there will be much less subjectivity in asking a 
detailed question like "How long will prototyping user reports take?" than in asking a macro 
question like "How long will the entire project take?" A thorough WBS also ensures that we 
do not omit major tasks and activities from our estimating process, and that we include time 
for management, administrative and quality assurance activities. To use a WBS for 
estimating, we proceed as follows: 

Develop the WBS using the guidelines in chapter 3 

• Estimate each task using the best techniques available to you. If there is an 
empirically based technique (such as past measurement) use this in preference. If 
not, use expert opinion and Delphi 

When you have the detailed estimates, summarize these upwards in the WBS 
structure 

• Where estimates exceed the Manageable Unit of Work (MUW), decompose the chart 
further 

• Ensure that the WBS contains all: 

Technical tasks 

Chapter 7 Estimating 95 



Management activities 

User liaison 

Administrative activities 

Quality Assurance activities 

A WBS with estimates added is shown in figure 7.11. 

Completeness and integrity can be enhanced by using a WBS derived from a 
comprehensive methodology, and refined by usage in previous projects in the same 
environment 

Don't revise the number you get when you get to the top of the WBS, even if you 
don't like it. If it has to be smaller, look in the WBS to see if there are any things that 
you don't need, or reduce the scope of what you are tackling 

Management Overhead 
Our experience indicates that you should allow about 10 percent overhead for management 

Analysis Phase 

Build WBS 

• Include Technical Tasks 

• Include Management Tasks 

• Show Phases at second level 

• Show Q.A. Tasks 

• Decompose until "Work Packages" are obtained 

Estimating Duration 

45 - 80 

Estimating 

• Do it at lowest level in WBS 

• Summarize Upward 

• Work in Resource Units 

• For any task which exceeds 5 days 
- Decompose further 
- Estimate Components 

Figure 7.11 

96 Managing Information Technology Projects 



activities on commercial development projects. Ths will be lower with small, well-knit 
teams, and higher with large, unfamiliar teams, or where using subcontractors. 

Quality Assurance 
We prefer not to see this as an overhead or "add on", but rather as a necessary part of every 
single activity. Nevertheless, we should ensure that some Q.A. only activities are included in 
the plan and estimates. These are primarily the review points at the end of each major phase. 
Experience indicates that these will typically involve about two days' effort each on an 
average size project. A variable amount of time will be required following each review to 
address problems identified in the review. Ths is hard to predict and will depend on the 
history of the team and organization with respect to delivering quality work. 

Converting to Calendar Time 
Once we have a quantum of effort which the project is likely to require, we can begin to 
schedule activities, apply resources and estimate an elapsed duration. There are many factors 
which come into play here to influence the result. As before there is also a range of 
techniques which we can apply. 

Analogy and Experience 
This is probably the easiest and most widely used technique. Unfortunately, it is also 
frequently the least accurate. Estimating by experience is essentially "gut feel". Someone 
who has been in the environment for some time, and has a feel for the application and 
technology quotes a figure. This could be fairly useful, if we have at least established a 
relative quantum of effort as above. Often this has not been done, and the results are 
disastrous. This is probably attributable to the natural optimism of systems people. 

Using analogies involves trying to find a similar sized application in a comparable environ­
ment and extrapolating from this experience. If a suitable project can be found for com­
parison purposes, and if all other factors remain equal (e.g., team size, team skills, staff 
turnover, technology, motivation, management, degree of specification change, etc.) we may 
get good results. More likely we will encounter problems. Even where good data is avail­
able, mistakes can be made. 

Analytical Models 
These have been proposed in various methodologies and by a number of independent 
authors. They attempt to cater, in some kind of algorithm or formula, for all the factors 
which influence the duration of the project. They normally take as their basic input the 
quantum of work to be accomplished in lines of code, run units, or function points. Various 
other factors which have an influence are then assessed and included in the formula. Finally 
the computation yields a calendar time estimate. 

In our experience these are highly environment and methodology dependent and seldom 
work when taken out of context. They can be usefully employed, however, in a stable tech­
nical environment using a well-defined methodology routinely and in a disciplined fashion. 
In these rare situations, the techniques provide a useful framework catering for the various 
factors and their relative degree of influence. You will still have to calibrate the range of 
each factor for your own environment. Until you have done this and validated the results, the 
approach should be used with caution. 

Chapter 7 Estimating 97 



I once audited a project plan for a life assurance company. They 
had set up a reasonable plan and project design and had even 
done a reasonable job of scoping and sizing the project. When I 
looked at the projected deadlines, however, I was concerned that 
the time looked hopelessly too short. "How did you arrive at this 
elapsed time?" I asked. The project manager replied: "Well, we 
just finished another project about half this size, and it took half as 
long, so we doubled the time that took." 

"How hard did you work on the previous project?" I asked. "It 
nearly killed us," he responded. "We were working twelve hours a 
day, six days a week for the last four months of the project. 1I 

They had not realized that they had just planned to do the same 
thing again, only for twice as long! 

There is a danger too, that as soon as you give someone a formula, particularly if it is 
implemented in a tool, they stop thinking and accept the results as gospel. We have seen 
project managers happily plug one set of assumptions into a formula and triumphantly 
announce: "MethodName says the project will take 230 elapsed days." This is absolute 
nonsense. The methodology designer has no idea of the exact conditions and environment 
under which the project will run; the answer is only an estimate; and it is only likely to be 
close to right if all the assumptions which the project planner has fed in are right! This kind 
of model can be much more usefully employed to assess a range of alternatives, i.e., to play 
what if? We should plug in a variety of assumptions, or scenarios and examine the likely 
results of our decisions, then use this as a guide to sensible ways to structure our projects. As 
a minimum, we should put in our most optimistic and then our most pessimistic assumptions 
and obtain a range within which the project is likely to fall. 

Empirical Models 
These are by far the best approach. Models derived from data collected from actual projects 
are used to discover the relative degree of influence of various factors. This information can 
then be used to estimate the duration for a new project under consideration. Examples 
include the NordenlPutnam model based upon the PADS database, and the CSC Index 
(formerly Butler Cox) P>E>P model based upon the P>E>P database which is structured 
similarly to PADS. The PADS database contains a wide variety of project types, including 
microcode, embedded systems, telecommunications, military and commercial systems 
development. It is mainly comprised of large projects (>70 000 SLOC). The P>E>P 
database contains mainly commercial projects. Both of these are derived from original work 
by Norden of IBM and Putnam from Quantitative Systems. In each of these, a significant 
number of projects were surveyed and the data captured in a consistent format, creating a 
database. Statistical techniques were then applied to find models which would describe the 

98 Managing Information Technology Projects 



behavior of the data, and hence the behavior of systems projects. The data fits a curve 
known as a Rayleigh curve, well known in engineering disciplines (figure 7.12). Putnam's 
software equation relates size (measured in LOC) to a constant technology factor (C), total 
project effort including maintenance in manyears (K) and elapsed time to delivery in years 
(t

d
). The formula is as follows: 

Size = CKl13 t 4/3 
d 

The Rayleigh curve dictates that tri will occur where the curve reaches a maximum. To apply 

% of Total Effort 

y' % use of manpower @ time t 
/ 2Katexp' at

2 

/ / K :::: Total effort a= ~ 
t :::: Time 2td 

y'max 

td :::: maximum of y' 

Norden-Putnam Curve: An Adaptation of the Rayleigh Curve Figure 7.12 

the formula, we must be able to estimate source statements; determine the value of C which 
is a composite: of factors such as technology, environment, skill level, etc., and can assume 
up to 20 different values; and we hold either K or td constant. 

A value of C for your environment can be calculated by using data from previous projects 
and making C the subject of the formula: 

S 
C = -113 413 

K td 

This, of course, assumes that you have data available for previous projects. If you do not, 
then you will have to try to use figures for an environment as similar to yours as possible 
(e.g., same technology, same industry), 

One very interesting implication of the Putnam model is the relationship between delivery 
time and effort. From the basic equation, we can derive one which describes the relationship 
thus: 

Chapter 7 Estimating 99 



This says the effort is inversely proportional to the jounh power of delivery time. The 
economic impact of the foregoing is astounding, as shown in figure 7.13. A project that 
would cost $168 000 if completed in 11 months, will cost $690 000 if completed in 8 
months, all other factors being equal. It could not be done in 6 months, regardless of how 
many resources we committed. Even if we do not have access to the proprietary databases, 
knowing how software projects behave, and being able to present the likely cost impact of 
unrealistic deadlines to senior management will put us in a much stronger position to 
negotiate realistic project plans and expectations. 

~690 o 
o 
o 

~ 528 
$ 
III 

Q.. 348 
E o 
() 

.s 246 
1;; 
o 
() 168 

2 

Data for Project 

40k SLOC, 1 xMM 

$6000, Constant 

Productivity 

4 6 8 
Elapsed Time to Complete 

(Months) 

Project Cost versus Time 

10 12 

Source: esc Index/PADS 

Figure 7.13 

The equations presented so far assume that we know either K (total effort) or t (time of 
delivery). These are obviously not known until the end of the project. To allow preddiction of 
time or effort, Putnam introduces another factor Do which is the manpower acceleration, 
i.e., the rate at which we add resources to the project. This is essentially the slope of the 
curve from the origin to td' 

K 
D;:;-

o 3 
td 

Values from the database are provided for specific project types, e.g., 7.3 for new software 
with many interfaces; 27 for re-implementation of an existing system. Using the previous 

~1~~~0~: t~n~a~~l~~e ~~~~~;):e can now get a formula which excludes either K or td (and 

K = (S/C)9n(D )4n 
o 

t = (S/C)3n(D )11f21 
d 0 

Putnam found that, for large projects, t occurred at the point of maximum manpower 
loading, with approximately 39 percent ofue effort expended. De Marco examined smaller, 

100 Managing Information Technology Projects 



commercial projects and found that td for these occurs significantly further to the right. For a 
sample of 24 projects between three and five man-years' effort each, the average point for t 
to occur was 2.5 times time to peak. d 

Related work by Barry Boehm provides a way to calculate the optimum manpower loading 
to deliver a product in a realistically short time. This takes the form: 

td nominal == 2.5 x (M).33 

where td is the most likely delivery time for a project requiring M manmonths of effort to 
complete. M is the effort to the left of t , i.e., the effort to delivery date, excluding 
maintenance. Thus, for a project of 100 mamRonths the typical delivery time will be 

2.5 x (100),33 11.43 months 

This assumes an average manpower acceleration factor. Your environment may differ, but 
completing the project in less time will typically require extraordinary productivity, or 
greatly increased effort. There is strong empirical evidence to suggest that there is a limit to 
the acceleration factors that can be applied. Boehm provides a formula for calculating the 
boundary to the "impossible zone". Projects which try to do M manmonths of effort in less 
than 

1.9 x (My33 

months are in the impossible region - see figure 7.14. This does not mean that it cannot ever 
be done, merely that no project included in the analyses to date has ever done it! You have to 
be very confident or stupid to ignore evidence like that. 

72 

60 
en 
or; 

'E 
0 48 :E 
P 0 
<C !:J 
(/) 

36 0 0 g 
a: 0 0 
a: 
~. 24 

> w 
c 

t-

12 

_I.--

500 

The Impossible Region 

0 

1000 1500 

o 

o IBM 
o Putman: USA - esc 
• TRW 

o 
TNOM '" 2.5 Z/MM 

2000 
Manmonths 

2500 

• 
"Imposible region" 
T

OEV 
< 0.75 T

NOM 

3000 3500 

Source: Boehm, 1981 

Figure 7.14 

Boehm. Barry, W,. Software Eogineering Economics. e 1981. p.182, Adapted by permission of Prentice HaJj, Upper Sadle River, New Jersey, 

Chapter 7 Estimating 101 



Another candidate is the Parr model (figure 7.15), an adaptation of the Putnam model which 
better fits smaller projects « 15 manyears) where the team is already partly established at 
the start of the project. Parr's equation is as follows: 

2 
Manpower (t) = 1/4 sech [(aHc)] 

2 

• Similar to Putnam-Norden but 
- Assumes some resources are in place at start of project 

- Better fit to a smaller project (e.g.,<15 manyears) 

• Manpower (t) =1/4 sech 2 [ at+c] 
2 

Time 

Parr Curve Figure 7.15 

Sech
2 

is the hyperbolic secant. These models have some exotic mathematics, which is 
simply useful to describe the shape of the curves and the behavior of the variables. Once you 
have a correctly drawn curve, you can rely on graphical techniques alone, if you prefer. 

It is interesting to note that commercial projects display high productivity relative to other 
types of projects (table 7.2). This is probably due to the lower complexity and less stringent 
quality, reliability and performance requirements. The need for higher quality in commercial 
systems as they become more mission-critical may reduce productivity unless we can also 
achieve re-usability. 

Additional Factors 
Various other factors can affect the calendar time and costs. You should consider the 
following to the extent that the information is available: 

102 Managing Information Technology Projects 



• Skill level. Is the team more or less skilled than average for your environment? Are 
they more or less skilled than the teams from which your estimating model or figures 
have been derived? 

At the outset, we will use an average for the installation, or the team, if this is known. 
At later stages, when specific resource assignments have been made, we may wish to 
alter the estimates based upon the skill level, or historical productivity, of the 
particular individual. Remember that there can be an order of magnitude difference 

Percent allocation 10 task. To what extent will people be committed to the project? 
We all too often blithely say that someone is committed 100 percent to the project, 
failing to recall that he is also required to do maintenance on two other systems, runs 
the social club and occasionally gets called upon to support users with complex 

Business 

Scientific 

Systems Software 

Telecommunications 

Process Control 

Command & Control 

Radar 

Avionics & Space 

Real time/embedded 

FirmwarelROM 

Microcode 

16 
12 

12 

11 

9 

8 

7 

5 

5 

4 

1 

Each index point 
means about .25 
morelless effort 

, 

Source: esc Index/PADS :i 
Productivity Indices by Project Type - PADS Table 7.2 

problems. We can also not expect 8 hours of productivity in an 8-hour day. The norm 
from experience is about 6.8 for a contractor or consuJtant dedicated to a project, and 
about 5 for an in-house employee 

• Training required. New techniques or application areas will often require that we 
train team members before they can successfully perform tasks that the project will 
require. This training and the attendant loss of productivity and costs must be 
incorporated into our estimates and plan. A good average is to budget for two weeks 
of full-time training per person per year. As a project manager, you are responsible 
for developing your staff - you must plan for growth 

• Leave. People take leave if you let them. This will normally average one month per 
individual per year. Although it is a problem for project scheduling, project costs and 
continuity, it is essential that leave is planned for on a long-term basis. People do 
need time away from the mill to gain perspective, recharge the batteries and renew 

Chapter 7 Estimating 103 



their personal relationships. These are all vitally important in the long term. Do not 
cut back on leave routinely, it will eventually cost you some of your star performers 

• Illness. If you don't let people take leave, they will get ill and take it anyway. There 
are also unavoidable illnesses, accidents, etc. These are of course, very difficult to 
predict, but we should nevertheless put in some contingency for their occurrence. 
Work on 10 days per person per year. This should be much less in a highly motivated 
team, but better to have the cushion if you need it 

Management/Administration overhead. There is inevitably a management and 
administration overhead that each individual in a professional team carries. Some of 
this is necessary, but we should avoid unnecessary meetings as far as possible, and 
ensure that the paperwork required is the minimum that will get the job done. We are 
constantly amazed at the lack of secretarial support for project teams. Organizations 
will commit seven or ten very expensive systems professionals to a team and allow 
the project manager (probably the most expensive) to act as a typist, filing clerk, 
spreadsheet jockey, etc. This is ludicrous. Organizations need to provide clerical 
support to project teams on an economic basis. Two or three days of the project 
manager's time saved per month will probably pay for a full-time project secretary. 
Motivation of team members is also vastly improved if they are not bogged down 
with menial tasks 

Quality AssurancelRework. There is an overhead associated with quality assurance 
activity. This should be offset by achieving higher quality, and consequent reduction 
in wasted effort, future maintenance, etc. We will return to this topic in detail in a 
future chapter. For now, let us remember that doing things properly sometimes takes 
a little longer. The old adage goes: "We never have time to do it right; but we always 
have time to do it again!" There will also be particular Q.A. activities that should be 
included in our project planning, such as time for review of deliverables, and time to 
redress any errors discovered during these reviews. We frequently see plans 
including reviews, but no time to actually respond to their findings. If we are going 
to ignore what the review discovers, we may as well not bother 

Unavoidable delays. We will often encounter unavoidable delays, particularly when 
we are dependent upon outside resources, or when we are gathering information 
from high-level users. We may need to interview board members. If we could 
schedule this at our convenience, we might need only two days. However, it may 
take three weeks or more to fit the interviews into the board member's busy 
schedules 

External depelUiencies. As mentioned above, we will frequently be using resources 
outside the team (e.g., DBA) or outside the organization (e.g., External Auditors). 
These dependencies need to be carefully coordinated with the organization supplying 
the resources or service to ensure they are available to the project with minimum 
delay. Of course, you need to keep them informed of any slippages or changes in 
your schedule! 

Holidays. Public, company and political holidays may introduce delays. You can 
expect to lose two weeks of productive time over the Christmas/New Year "silly 
season" 

Company cycles. Plan to avoid critical company cycles as far as possible. These 
include financial year end, tax year end, management strategy sessions, critical 
trading peaks (e.g., a retailer over the festive season). Unfortunately, some systems 
projects will require you to synchronize with these occurrences. In these cases, you 
should anticipate that there will be other demands on your team, sponsors and users 
and that extra resources may be required 

104 Managing Information Technology Projects 



Task Dependencies. The old adage goes: 

"If a woman can produce a baby in nine months, surely two women can do it in four 
and a half' 

As we know, it simply does not work that way. People and time are not 
interchangeable. Some tasks simply must wait for others to finish. There is no point, 
for example, designing physical database structures until our logical data model is 
complete. We must respect all of these dependencies in our planning. We can usually 
find guidance in terms of these dependencies from our systems development 
methodology. 

Estimating Principles 
Emerging from our discussion to this point are some important principles that we should 
apply to our estimating: 

• Separate the estimators from the doers. De Marco and other researchers have shown 
that developers who estimate their own performance are consistently optimistic. 
These biases appear to disappear when the same people estimate for other resources. 
The message in this is that we should separate the estimators from the doers on a 
given project. De Marco suggests creating a separate estimating group to assist teams 
III developing estimates. This has the following advantages: 

Provides an independent, unbiased opinion 

Increases consistency of estimates across projects in the installation - at least if 
they are wrong, they are likely to err in the same way. The relative size of 
projects is still maintained and correction of planning once the deviation is 
discovered is greatly simplified 

Builds estimating expertise. Having a team with this focus allows the 
individuals in it to gain a much greater exposure to the estimating process and 
more practice in applying the techniques than the typical project manager 
would get 

Provides a central point for collecting and analyzing estimates, actuals and 
performance 

• Estimate at several levels, Estimates must be adjusted as we validate or debunk 
assumptions, and as our knowledge of the project, the resources and the system 
under consideration improves. For example, we may use an average factor for team 
member productivity at the outset when the team has not yet been assembled. This 
may be adjusted later when we know who the individual team members are and what 
their past performance has been 

• Quote a range, Never quote a single figure until the project is finished, Generally 
speaking, the less you know, the broader you go. Initial estimates will have a high 
margin of error and a correspondingly wide range. Later estimates can become more 
certain and specify a smaller range 

Use techniques appropriate to the phase. Try to use the best techniques available to 
you with the information available to you at that point 

Chapter 7 Estimating 105 



Use several techniques. Different techniques make different assumptions and are 
sensitive to different factors. It is thus wise to employ several techniques and 
compare their results. If they correspond reasonably well, then your estimates are 
probably sound. If there is a wide discrepancy, you should look flrst to see if any 
errors have been made in applying the techniques. If this is not the case, then look to 
see what each technique is sensitive to that the other one might not be. For example, 
one technique may take into account technological complexity, where another one 
doesn't. If this is a signiflcant aspect of your project, you may need to adjust the 
estimate from the technique which is insensitive to this variable. 

Qualify your estimates. Try to give management a confldence level in your 
estimates. This can be done as follows: 

Determine the range of your estimate (Minimum and maximum) 

Find a "most likely" estimate which may not necessarily be the midpoint of the 
range 

Adjust the estimate by weighting the most likely as follows: 

NewEstimate == Min + 4xMostLikely + Max 
6 

Approximate one standard deviation from the new estimate by calculating 

Max Min 
6 

Quote your range as the NewEstimate + or - this figure 

The confidence level in this estimate is 68 percent (one standard deviation) 

If a 99% confldence level is required, approximate 3 standard deviations by 
using 

Max - Min 
2 

and quoting the NewEstimate + or - this flgure 

Revise your estimates based on the actual performance achieved, or any change in 
the underlying assumptions or information upon which our estimates are based. For 
example, if the specification phase ran 50 percent over the estimated duration, we 
can expect a similar overrun on later phases. If the initial ten programs take half the 
expected time to develop, we can probably reduce the estimates for the remaining 
thirty programs (provided the initial sample is representative!) 

Our standard project lifecycle caters for the concept of a Creeping Window (figure 
7.16), where we proceed as follows: 

Estimate in detail for the first phase (Le., for each task). Prepare soft estimates 
for later phases 

As tasks are completed, record the actual performance 

At the end of the phase, summarize the actuals for the previous phase. Using 

106 Managing Information Technology Projects 



the knowledge gained to that point, estimate the next phase in detail to task 
level. Redo the soft estimates for later phases 

Adjust project plans to reflect the new estimates and commence work on the 
next phase 

Repeat this process to the end of the project 

Actuals Detail Estimates Soft Estimates 

Phase 1 IIIII 0 1 ~h4 I ~.: :h~ I '/ :i' 

;';,1/,,,,,..;, ;:"/:, ,~;;,' , r'-_~~,c;;. __ , ,"'.,~ .. .' "" 

Phase 2 

I 

: Phase 1 __ =:.=:.-
I Summary. - =:. - -Actuals 

Using Project Management Software 
- Define Work Breakdown Structure 
- Collapse all but current phase 

The Creeping Window Figure 7.16 

An automated project management tool greatly facilitates this process. We can also 
focus our attention on just the current phase, while viewing it in the context of 
previous completed phases and later phases presented as summaries only. In this 
way, we may reduce the number of tasks we need to deal with at anyone time to say 
20 to 30, rather than the 200 to 300 which the whole project may require 

• Collect data. If we are ever going to improve our estimating performance, we need to 
collect actuals, to know how we did on previous estimates. This can best be done by 
a central group (the estimating team?). They will obviously be dependent on input 
from the project managers, and they in turn on input from their team members. We 
will address the kinds of information that need collection and how they can be 
analyzed and reported in more detail in a later chapter 

• Check reasonableness. When we apply science, we should not throw common sense 
out of the window. It is all too easy to drop a digit or put a decimal point in the 
wrong place when doing a series of calculations. If the numbers that come out of our 
models or formulae don't look right to your experienced eye, then at least check 
them. Also, try another estimating technique as advised earlier 

• Add an overall contingency (about 20% is normal) for unforeseen circumstances. If 
we do this, it is important that this contingency not be seen as part of the estimate by 
the project team. "Work expands to fill the time available." Quote the contingency in 
your estimates to management, and use the figure in your cost-benefit calculations 

Chapter 7 Estimating 107 



Monitor your effectiveness. Given the poor state of estimating performance in most 
organizations, and the large sums of money spent on projects, it is startling how 
seldom estimating effectiveness is actually checked. An excellent measure is the 
Estimating Quality Factor (EQF) proposed by de Marco. 

A graph is drawn (figure 7.17) with time on the horizontal axis, and cost (or effort) 
on the vertical axis. As estimates are made or revised, the projected cost is plotted as 
a horizontal line from that point in time, to the next revision point. At the end of the 
project, the actual cost or effort for the project is plotted as a horizontal line parallel 
to the X axis, at the appropriate cost level. The EQF is determined by dividing the 
area under the actual cost line, by the sum of the areas where the estimate deviates 
from the actual cost line. (The shaded area in the figure.) The higher the result, the 
better the estimating performance. Scores below 8 should be regarded as unaccept­
able 

Actual Effort/Cost 

t,um"ed EHort/Cosi 

Estimating Quality Factor 

Actual 
Delivery 
Date 

Revie Points 

Source: DeMarco, 1982. 

Figure 7.17 

Applicability of Techniques versus Phase 
From the foregoing, it should be obvious that various techniques offer different advantages 
and require different inputs. These mayor may not be available. We are thus forced to use a 
variety of techniques at different points in the project lifecycle. We should obviously try to 
use the most accurate techniques we can, given the information available to us at that point. 
Figure 7.18 is a summary of which techniques can be usefully employed at what stage. 

Putting It All Together 
We have discussed a wide variety of techniques and approaches, concluding with the 
principles you should apply. You are probably wondering how to put this all together in 
practice. Below is a list of activities in the sequence you would perform them on a typical 

108 Managing Information Technology Projects 



~ 

I I 

I 
I i I 

" Wideband Delphi ! .. · . i i 

Initiation Feasibility Ext Des Tech Des Buildrrest Install 

, Analogy 
I I .. · . . . 

Mathematical Model .. · . 
l~USing Function Points) 

I Mathematical Model · . 
(using SLOG) 

! 

Mathematical Model 

j (using Design Metrics) 

Constraint Models · . . . · . 
i 

Top-Down · . 
H Bottom Up I I ' , 

i i · . . . 
'1,/,1 ."'",';,? '" -;{' 

I' 
','I'"~ '," ,I i;'. ",," :'1,:" ;,.',' ' ,,;' ",.'",'; '.",: 

Source: Saker 1990 

Applicability of Techniques versus Phase Figure 7.18 

project. The initials in brackets indicate primary responsibility for the task (PM == Project 
manager or delegate; EG == Estimating Group). The accompanying "Estimating Engine" 
diagram, figure 7.19, should also help to put the various techniques in context. 

Define project including goal, objectives, constraints (PM) 

Scope the project (PM) 

• Prepare initial PBM for results from project (PM) 

Estimate size of deliverables. Use more than one technique (EG) 

Estimate effort (EG) 

• Develop WBS to detail available (PM) 

Add the effort known (PM) 

• Estimate effort/duration for tasks where estimates are not available (EG/PM) 

• Convert effort to elapsed time. Use more than one technique. Adjust for individual 
identified resources. (EGIPM) 

• Develop an optimistic/pessimistic scenario (EG) 

• Quote the range adjusting for most likely and required level of confidence (EG) 

• Record your estimates (EG) 

Chapter 7 Estimating 109 



Size 
Estimating 

System Delphi 
Scope 

Project 
Charter 

The Estimating Engine 

Effort 
Estimating 

coco~\ 

8ang/MM ~ 

FP/MM j~ 
Delphi 

Environmental 
Factors 

Duration 
Estimating 

Nordenl 
Putnam 

~;. 
Parr -----Joo 

Boehm 1 i 
Algorithmic 

Resource 
Details 

Repeat as more detail becomes available (PM initiates, EG performs) 

Project 
Duration 

Project 
Cost 

Figure 7.19 

• Collect actuals to improve performance (PM provides, EG records and analyzes) 

Monitor estimating performance (EG) 

Improve techniques (EG) 

Distribute techniques (EG) 

110 Managing Information Technology Projects 



Case Questions 

MyWay Organizer. 
Q7.1 
Your management has asked you to give an opinion on the feasibility of completing the 
project in four months. Prepare an estimate and justify your answer, giving a degree of 
certainty. Proceed as follows: Add to the Work Breakdown Structure for the MyWay 
Organizer development (your own or a sample answer to Q3.1) your estimates for duration 
of each task at the lowest level. Assume you have yourself as project manager, an 
experienced analyst, an experienced analyst programmer, and a more junior programmer on 
the team. Summarize these upward to determine an overall project duration. (15 mins) 

Q7.2 
Add to the Product Structure Model for the MyWay project (your or sample answers to Q4.1 
through 4.3) your estimates for the effort to complete each deliverable at the lowest level. 
Assume adequately qualified staff will prepare each deliverable. Summarize these upward to 
determine an overall project effort. (15 mins) 

Q7.3 
Using the context diagram for the project (answer to Q2.2), determine a raw (unadjusted) 
function point count for the MyWay Organizer. (15 mins) 

Q7.4 
Using the description of the technical environment and your knowledge of the project to 
date, determine the adjustment weightings for use in the FP count for the Organizer. 
Determine the adjustment factor. (15 mins) 

Q7.5 
Determine the final FP count for the organizer. If your organization typically displays a 
productivity of 16 fp/mm for a team of four, what is the likely elapsed duration of the 
project? (10 minutes) 

Chapter 7 Estimating 111 



Q7.6 
Form a group of six. Appoint a chairman. Make sure that you have at least four people with 
good programming background. Conduct a Delphi session to estimate the ESLOC in the 
MyWay organizer. (15 mins) 

Q7.7 
Taking the answer from Q7.6, or a number provided by the instructor, determine the most 
likely and minimum completion times using Boehm's guidelines. Assume a delivery rate of 
900 ESJOC per manmonth. What factors in this project might cause you to take longer than 
these figures? (15 mins) 

Gleam Stores 
Q7.8 
Using the context diagram developed in Q2.5 (your own or a sample answer) and the 
information provided regarding the technology environment, determine the adjusted 
function point count for the Gleam stores pilot system. (30 minutes) 

Q7.9 
Using the adjusted FP count from Q7.8, and the knowledge that the pilot system was 
developed, documented and tested by a team of 4 people in 9 months, determine the 
productivity level which the team exhibited. Management has asked how many people you 
will need to tackle a new project dealing with stock optimization and interbranch transfers 
between stores. The proposed system is estimated to be 1.5 times the size of the pilot system 
and should be completed in 7 months. (30 mins) 

Handover Trust 
Q7.10 
An estimate of 2300 FP has been produced for the rewrite of the New Business (NB) system 
for Handover Trust. This processes applications for new policy contracts from receipt to 
their final conversion to policy contracts or rejection. The system will capture applications, 
verify completeness, capture new client details if necessary, capture medical details, assist 
medical assessors and underwriters in reaching decisions, interface to an industry database 
for checking and to advise on rejections, validate banking details, project benefits and 
generate a contract or a variety of rejection notices. It is also possible that applications may 
be accepted with modifications, which the system, or its users, will suggest. It will also 
interface to a reassurance system in cases of large cover or high risk. 

The system will be developed in a client server environment using a relational database 

112 Managing Information Technology Projects 



server and high level GUI development tools in the client workstations. Client server 
projects in the environment to date have produced productivity levels of about 13 FPIMM 
with small focused teams (3 to 4 people). Due to the urgency of the New Business project, 
and its criticality to the business, you have a free hand with resources. Management has 
indicated that you can use up to forty selected people to achieve the most rapid 
implementation possible. 

Estimate the productivity you can expect for different team sizes and prepare a 
recommendation to management for the team size you would recommend and your reasons. 
You must provide a well-supported estimate of the overall duration of the project. 

How could delivery of key functionality be brought forward? 
(1 hour) 

07.11 
An analysis of the early client server project estimates has yielded some interesting results. 
The quality assurance and planning support group has asked you to perform some further 
analysis to determine the accuracy of estimating. They have provided you with two project 
histories. They have not identified them to ensure that the answers are objective: 

Phase 

Project A 
Initiate 
Requirements 
Prototype & Design 
Build & Tuning 
Integration/stress test 
Installation 

Project B 
Initiate 
Requirements 
Prototype & Design 
Build & Tuning 
Integration/stress test 
Installation 

Estimate for full project Actual time for phase 
(Calendar weeks) (Calendar weeks) 

15 
15 
17 
17 
16 
16 

25 
27 
30 
30 
35 
35 

1 
3 
3 
2 
4 
4 

2 
5 

12 
10 
5 
2 

Determine the Estimating Quality Factor for each project. What contingency should be 
allowed on plans with the current level of estimating expertise? (30 minutes) 

ThoughtWell Books 
07.12 
Using the previously developed Context Diagram, determine the likely size of the required 
software system using Function Points. (20 minutes) 

Chapter 7 Estimating 113 



Q7.13 
Assume your organization achieves a productivity level of 17 fp/mm per person on average 
LAN projects. A typical project team would have four members. Your management has 
indicated that you could assign up to 8 people to your project. Resources are charged at $400 
per day per person and $650 per day for the project manager. Assuming it is now June 1, 
1995, what is the earliest date you could promise delivery of a working system to the client? 
What will the total cost of the project be, excluding any hardware purchases? Show all 
workings and support your deductions in a manner defensible to management. (40 minutes) 

114 Managing Information Technology Projects 



Lifecycle Choice 

8 Project 
Design 

We have already introduced a generic project lifecyc1e (PLC) in earlier chapters (figure 8.1). 
This serves as an umbrella and a framework within which the work can be accomplished. 
We also alluded to the existence of other lifecycles (such as the Systems Development 
Lifecyc1e [SDLCD which may be embedded in the project lifecyc1e to tackle a specific kind 
of project. We now need to consider some of the alternatives for the SDLC, and to discuss 
the pro's and con's of each of these. There are no wrongs or rights here - each is appropriate 
to a particular type of project and set of circumstances. The intent of the discussion is to 
inform you of some of the options and their strengths and weaknesses so that you can better 

Project Lifecycle 

( Schedule ) 

( 
( 
( 
( 

Collect 
Results 

Check 
Quality 

Assess 
Progress 

Until All Tasks 
Are Complete 

Per Phase 

Figure 8.1 

Chapter 8 Project Design 115 



choose and adapt these to your own situation. In the section which follows, the discussion 
will concentrate on variations in the SDLC. We will then go on to discuss other lifecycles 
appropriate to other kinds of projects (e.g., system maintenance). 

Waterfall Model 
This is the classical SDLC model first described by Royce in 1970, illustrated in figure 8.2. 
It begins with Requirements Definition, followed by Specifications (what must be 
done/delivered), then Design (how the specifications will be met); next Implementation 
(building the product); Integration (making sure all components work together) and finally 
Operations (when the product is deployed into its working environment). These stages are 
assumed to be discrete, with one completing before the next stage commences. Thus the 
Specification would be signed off before Design would begin. In practice, it is almost 
impossible to get each stage's output 100 percent right before proceeding, so there is 
provision for feedback, to allow errors detected in later stages to cause corrections to output 
produced in earlier phases. To this extent, the broken line arrows in the diagram can be 
considered to represent maintenance activity. 

Feasibility 

Analysis 

Design 

Build 

Implement 

Operation 

Waterfall Model Figure 8.2 

Problems with the waterfall model include the assumption that the phases are discrete, which 
we find in practice that they really are not, the maintenance involved in going back and 
correcting supposedly finished deliverables, and the overall time taken (little can occur in 
parallel). A major difficulty is that the specification may contain serious errors which will 
only be discovered very late, at the integration or operations phase. This is very expensive to 
correct, as a lot of detail work, e.g., program and file design, coding, testing and 
documentation has been done, and will need to be redone. Estimates of the size of the 
problem have been produced by Boehm, Martin and others. Consider the summary produced 
by Schach in figure 8.3. 

The huge maintenance effort (and hence cost) is attributed to poor requirements definition 

116 Managing Information Technology Projects 



Design 
7% 

Specifications 
5% 

Requirements 
3% 

Relative Costs ot Lifecycle Phases 

Integration 
6% 

Maintenance 67% 

Source: Schach, 1993. 

Figure 8.3 

and specifications. Martin came up with the estimates of effort expended to correct errors 
shown in figure 8.4. 

l Phase Percent 

Requirements 82% 
~oo. 

Design 13% 

Coding 1% 

Other 4% 

. . . . ..... 
Source: from Martin 1993. 

Effort on Correction of Errors Figure 8.4 

Even more alarming is the relative cost to correct the same error, depending upon where it is 
detected. This is summarized in the graph shown as figure 8.5. 

These facts have serious implications for how we should manage projects. Firstly, we must 
be rigorous in producing quality through every stage, and second, we must try to choose 
lifecycles and techniques which will reduce errors of requirements definition and 
specification. Most of these errors occur because of a lack of understanding (detail) or 

SOIl,ce: Adapted from Slepben R. Schach, Software Engineering, (Burr Ridge, IL: Richard D.lrwin Publishing and Asken Associates, IDe., 1993). P.l L 

Chapter 8 Project Design 117 



Cost! 
,~r----

100 000 ,Sj 
,,> 

10 000 ; 

1000 

100 

10 

I nit. Feasib. Req. Design Build Imp!. 

I Phase 

Relative Cost to Correct an Error Figure 8.5 

failure of communication between the developers and user community. Various lifecycle 
variations try to address these in a variety of ways. 

Systems Engineering Lifecycle 
This is based upon and closely related to the classical waterfall model. It is typically used in 
system engineering projects where the resulting products must have very high reliability and 
integrity. An example would be a missile guidance system where errors would have 
extremely serious consequences. Other examples would be software controlling a steel mill 
in real-time, or an airliner navigation system. In all of these, the cost of errors (in human and 
monetary terms) is unacceptable. The IEEE have over time standardized a Systems 
Engineering Lifecycle. This is formally defined in IEEE 1058, 1987. The plan is fairly 
flexible, and will, with tailoring, handle virtually any kind of software/systems engineering 
project. In the latter, engineers are frequently concerned with the concurrent development of 
both hardware and software that will run in the as yet unavailable hardware. 

The lifecYcle, as shown in figure 8.6, is a variation on the waterfall model, with standard 
named phases terminating in formal reviews. Borrowing from the engineering discipline of 
Configuration Management, they introduce the concept of baselines, where a baseline is 
defined as the set of deliverables that will be complete (and frozen) at a particular review 
point. Two other important concepts are those of concessions and deviations. Concessions 
are things which were present in the specifications at an earlier baseline which the sponsor 
concedes will not be delivered in the ultimate product. An example will be the original 
specification calling for voice input of terminal commands. This may prove to be too 
difficult technically, or too expensive to justify. The sponsor then formally concedes that 
this will not be present in the design specification and delivered product. Note we said 
formally - it must be in writing and carry the sponsor's approval. 

Deviations are requirements from a previous baseline which have not been met when a 
review is done. The sponsor does not concede that these can be left out. They must therefore 
be addressed and included/corrected before the project continues. An example here would be 

118 Managing Information Technology Projects 



Defined Deliverables 

Formal Reviews 

Software Engineering Lifecycle Figure 8.6 

that a response time of less than three seconds has been called for in the design 
specifications. When the product is tested, response times greater than three seconds are 
experienced. The project must halt and correct the problem before commencing with the 
next phase. Again, these are formally recorded, and the correction must be formally 
approved by the sponsor. 

The lifecycle provides very tight control over scope changes and supports quality 
management well. We will discuss configuration management and quality assurance in more 
detail in later chapters. 

Drawbacks of this approach include the formality, extra documentation, extra effort and 
discipline, which can discourage innovation and demotivate team members. Careful 
marketing by the project manager is necessary to selI the benefits to the organization and 
team. These are primarily cost containment through scope control, and high quality through 
formal reviews and correction of deviations. 

Most commercial organizations will balk at the degree of formality and potential overhead, 
but we believe that a modified version of this approach is appropriate in business, for 
mission-critical applications, given the expense and criticality of systems now being tackled. 

Overlapping Phases 
In commercial use, we normally see a variation of the waterfall lifecycle with the phases 
overlapping somewhat. See figure 8.7. The chief advantage is reduced project time. 
However, we must realize that increasing overlap generates increasing risk, since the 
chances that we are doing detail work on incorrect specifications or assumptions increases. 
Resultant rework will increase correspondingly. We probably do not want this to happen, 
given the figures we saw earlier showing where our effort already goes in the lifecycle. We 
may find our overalI effectiveness and productivity would be increased if we followed the 
old adage to "hasten slowly". 

Chapter 8 Project Design 119 



Feasibility 

Design 

Build 

Implement 

Operation 

Overlapping Phases Figure 8.7 

Prototyping 
Prototyping as a feature of the lifecycle has been adopted as a result of two factors: 

The ability to do it inherent in online tools (such as 4GL languages, screen painters, 
Communications Control packages, etc.) 

The need to show the user something and to verify the requirements and user 
interface suitability early in the project before a large amount of detail work is done 

A prototype is a model of the real thing which will exhibit some (but not all) of the same 
behavior as the final product. It is built with a view to testing concepts and verifying 
viability before major commitments are made. In this sense an architect's paper model can 
be considered a prototype. It will allow the assessment of the overall concept, appearance, 
relationship to the environment; how the structure will relate to the direction of ambient 
light, and so on. We would certainly not want to live in it, however, even if if were life-size. 
It would not have any insulation, it does not have electricity, plumbing, or sewerage. These 
will only be present in the final product, i.e., the building. 

The model is extremely useful, however, to correct any misconceptions of the designer 
before we proceed. The client may have asked for a particular style of roof, which in 
practice does not suit the rest of the design. This could be apparent from the paper model. 
Various options can then be tried at minimal cost, and a good alternative chosen before 
construction begins. This is the proper use of a prototype: to verify requirements, or 
feasibility. 

An example of verifying feasibility would be as follows: A supermarket decides to imple­
ment a system whereby clients can directly debit purchases to their bank accounts. This will 
entail the simulation of an A TM transaction by the Point of Sale (PaS) equipment. If this 
link in the system is not viable, then the whole concept falls down. We may decide to build a 
technical prototype in collaboration with the banks, to hook up a pas terminal and test its 
communication ability acting as an ATM. When this is successful, we can then proceed with 
the rest of the project. Used in this way, prototyping can significantly reduce project risk. 

120 Managing Information Technology Projects 



There are several ways to use specification prototypes to verify requirements. One of the 
simplest is to use mocked-up screen and report layouts to show the user what the inputs and 
outputs of the proposed system will look like. A more advanced prototype would simulate 
the online behavior of the system complete with dialogues (sequences of screens in the order 
in which the user would encounter them) and sensitivity to the use of function keys, menu 
selections, etc. These are particularly useful to gauge whether the user interface is 
appropriate to the target user community. 

Prototyping can be incorporated in the lifecycle in a variety of ways: 

As a replacement for the conventional specification process. This is not recom­
mended, except where very powerful tools are available and the project in question is 
creating new outputs from existing data (for example, an Executive Information Sys­
tem [EIS]). The danger is that we can end up with a product with poorly conceived 
and balanced functionality - a house without a sewerage system. This is illustrated in 
figure 8.8. 

Functionality Identified by Prototyping 

Prototyping as a Replacement for Functional Specifications Figure 8.8 

To verify the requirements. This is strongly recommended. Normal functional and 
data models of the proposed system are constructed. We then rationalize which func­
tions are to be computerized in the current phase. These are then prototyped with ref­
erence to the data model and dictionary. In the process the detailed format of inputs, 
outputs and flow of dialogues is established and recorded for later incorporation in 

Chapter 8 Project Design 121 



Functionality Redefined by Prototyping 

Prototyping Used to Refine Specifications Figure 8.9 

the production system. This concept is illustrated in figure 8.9. A lifecycle to accom­
modate this is shown in figure 8.10. 

Feasibility 

Prototyping Lifecycle Figure 8.10 

• To synthesize the user inlerface. Again this is highly recommended. It allows the 
user community to assess how complete and practical the system is in operation. It 
should definitely be done where we are contemplating a change of user interface 
(e.g., from a character-based interface on a mainframe to a Graphical User Interface 
[GUl] on a workstation). Something as simple as getting the fields on the screen in 
the same order and relative position as they are on a familiar input form can greatly 
reduce training requirements, alleviate frustration, and enhance system acceptance. 

122 Managing Information Technology Projects 



• Evolutionary prototyping refers to the technique which builds a prototype and then 
adds functionality to evolve into the production system. This should not be attempted 
unless it is very carefully managed, the system is not mission-critical, and the 
technical environment supports the process very well. The latter would assume the 
availability of a comprehensive active repository for design information, such as 
would be found in an I-CASE environment. Some new object oriented development 
environments can successfully support this approach for small projects. Trying to do 
it with conventional technology is like trying to turn the architect's paper model into 
the real house - very difficult and usually unsuccessful. 

Joint Application Development (JAD) 
This is an approach first used in IBM Canada. It makes use of intensive, facilitated meetings 
with all players present to achieve rapid consensus. It aims to reduce the time required for a 
project by speeding up the data-gathering process, facilitating rapid decisions which carry 
commitment from participants, and improving the quality of communication between 
sponsor, users and other members of the team. The approach has considerable merit. It can 
be used in conjunction with various types of lifecycle. JAD activity is particularly high in 
the areas of strategy and planning (where it is referred to as Joint Requirements Planning 
[JRP]), gathering information, building models, and reaching concensus decisions (e.g., 
how best to proceed with implementation). Its typical usage profile in the lifecycle is shown 
in figure 8.11. 

Feasibility Req. Def. Tech. Des. Build Implement 

JAO in the SOLe Figure 8.11 

The actual techniques employed will be discussed in more detail in the chapter on Human 
Communications which follows near the end of the book. For now, we will concentrate on 
the implications for project design. JAD should be used where possible to gather information 
rapidly, to shorten the project lifecycle, to enhance the quality of communication, models 
and specifications, and to obtain rapid decisions. To use it successfully, you will need senior 
management commitment, educated participants, and the necessary JAD facilitator and 
Scribe skills. These could be within the team but this is not optimal. The principle behind 

Chapter 8 Project Design 123 



JAD is that the facilitator and scribe have no vested interest in the outcome of the sessions, 
so that they can act impartially and extract maximum input from the participants. The 
facilitator and scribe should thus be from outside the team if possible. In some organizations, 
they may be drawn from a small pool of such specialists in a corporate planning area or 
development support group. Other organizations choose to use outside facilitators from 
consultancies. Although this can be expensive, the results obtained can often be superior, 
since the use of an outsider genuinely ensures impartiality, and focuses attention on the 
importance of the J AD sessions. 

JAD used together with Rapid Prototyping and CASE has been described by Martin as 
Rapid Application Development (RAO). This is really just a synthesis of techniques, which 
we have discussed, by organizations with a sufficient level of skills, experience and tech­
nological infrastructure to use the combination successfully. Some spectacular results are 
quoted in terms of productivity achieved. While these are probably true, we suspect that 
there are just as many, if not more, spectacular failures of projects in organizations trying to 
employ the gamut of these techniques without the necessary management support, in­
frastructure, skills or experience. 

Iterative Lifecycle 
An interesting variation on the lifecycles presented thus far is the iterative approach 
proposed by Wong and others. This approach is based on the premise that software is built, 
not written. Thus it is unrealistic to expect to deliver a complete, complex working system in 
one "big bang". The iterative approach aims to develop the product incrementally, using 
feedback from the detail work to refine other parts, of the specification for example, as we 
proceed. 

The Iifecycle makes use of successive bUilds. In each build, a subset of the full target system 
is developed through all stages up to integration. Feedback and experience from this process 
is used to identify and tackle the next build. In this way the full product is eventually 
completed, integration tested and delivered. 

Advantages are the increased experience and skill gained in successive builds, and the 
earlier detection of requirements/design errors or invalid assumptions. For example, if we 
have made some incorrect assumptions about the performance of a new database, this will 
be discovered during the first build, and we can take advantage of the information in all 
subsequent builds. If we followed a big bang approach, we would only discover the problem 
late in the lifecycle, and once all programs and file structures had been specified. Difficulties 
can be encountered in integration of different builds, and in partitioning the functionality in 
such a way that manageable chunks are obtained for each build. These have to have 
minimum interfaces to and reliance on other system components which will be delivered in 
later builds. If this is not so, excessive rework and bridging will be required to get each new 
build to work operationally. There can also be an undersirable increase in integration effort 
and testing if too many builds are specified. Approaches which we can adopt to partitioning 
the project will be discussed later in this chapter. 

Phased Delivery 
A variation of the iterative model is the evolutionary (or phased) delivery model described 
by Gilb, shown in figure 8.12. In this approach we again make use of successive builds, but 

124 Managing Information Technology Projects 



Feasibility 

Analysis 

Design 
Phase One 

Operat:onal 

Phase Two 

Phased Delivery Figure 8.12 

each build is actually delivered as an operational subset of the final system. Essentially, a 
fuji functional specification for the complete system is prepared. This is then partitioned to 
provide useful discrete sets of functionality from a client perspective. These are then 
prioritized, with each subset becoming the focus of a build. The advantage is that useful 
functionality is made available to the user community much sooner. An example from a life 
assurance company will illustrate this. The target system is a new business processing 
system which will handle all application forms for 12 different types of policy. We might 
choose our builds as follows: 

Build Functions 

1 Client details maintenance (add, change, delete, enquire, print) 

2 All non medical applications (including endowments, annuities and provident funds) 

3 Medical details processing and risk assessment 
Highest volume product with medical requirements (individual whole life) 

4 Other medical required products 

5 Combined plans and special packages 

Chapter 8 Project Design 125 



The choice of builds can be optimized in a business sense by making use of value to cost 
ratios. Basically, we determine the value of each subset of functionality, and estimate the 
cost to implement this. We then try, within the technical dependency constraints, to optimize 
the delivery sequence of builds so that maximum business benefit is derived as soon as 
possible for minimum expenditure. We may even decide that some components' yield is too 
low to justify their development and drop them. In practice, we normally find that the low 
priority builds are dropped in favor of more pressing needs at subsequent planning sessions. 
This may not please the purists who will argue that the initial system as architected will 
never be completed. We can counter this by saying: So what? It was an arbitrary package of 
functions which represented our best understanding of the requirements at that point. We 
now know what is more important! And so we can maximize the return on investment for 
the business, which is after all, our client. 

Timebox 
This approach is a novel and very useful one. The major criticism of most I.T. projects is 
that their delivery of results is unpredictable in terms of time and cost. In previous chapters 
we have highlighted the difficulties of achieving accurate estimates. The timebox approach 
guarantees a delivery date by fixing it and allowing the size of the product delivered to vary. 
It greatly simplifies planning by providing an essentially fixed timescale and lifecycle. 
Basically, we could decide to have a cycle lasting, say, four months. This could follow any 
of the lifecycles we deem suitable. The one difference is that the end date is absolutely fixed. 
If the requirements have to be reduced to meet the deadline, then so be it. At the final date 
we implement what is ready and quality assured. Anything which misses this date is carried 
over into the next cycle. 

Advantages include predictability of the implementation date, control of costs, and reduced 
planning overhead. 

The cycle can also be very easily adapted to include maintenance activity with no distinction 
from system development. Disadvantages include the risk of having something which 
requires integration only partially ready at the end date. This could delay implementation of 
a major set of functionality until the end of the next cycle. Careful partitioning is still 
required to try to get a manageable, but non trivial, chunk for each cycle. Project teams must 
be motivated or else the escape valve of dropping functionality will be used too liberally. 

Spiral 
Boehm has proposed a spiral lifecycle, which is really successive waterfall cycles (like the 
iterative approach), with a risk assessment between each build. 

The Simulation Approach 
We would now like to propose a new approach, which draws upon the good features of 
several of those previously presented, and which takes advantage of emerging software 
technology, particularly Object Orientation (00). Object oriented techniques and tools are 
gaining widespread acceptance recently in the creation of complex software, e.g., Windows, 
the new Apple operating system (Pink) etc. Object Oriented Technologies have their roots in 
the early simulation language Simula 67. This was the first language to provide a specific 

126 Managing Information Technology Projects 



syntax to represent real-world entities (or objects) which would have characteristics (e.g., 
size, color, location) and behaviors (e.g., ability to turn on or off; report their status; change 
color; and so on). It also introduced the important notion of classes which allowed the 
designer of a simulation to describe all similar objects just once. For example, once we 
describe the class automobile as having the attributes of make, model, year, number of seats 
and fuel consumption, and the behaviors accelerate, decelerate and turn, then any object 
identified as an automobile would inherit these characteristics and behaviors. Simula and 
LISP gave rise to Smalltalk, which in turn gave rise to many other object oriented languages. 
Like the structured programming concepts of the '70s, the 00 approach has steadily 
expanded to include design, analysis, and now business modeling. 

It is significant because it allows a much richer modeling of the real world in our 
architectures, analysis and design models, and ultimately in our systems. We are beginning 
to have the tools to create systems as increasingly accurate simulations of the real world -
see figure 8.13. Another development is the emergence of commercially available class 
libraries, which embody the knowledge about a particular domain (for example, user 
interface model or application area [e.g. retail]). These facilitate massive re-use of pre­
existing software components developed by experts in their own particular field. Re-use is 
the best way to obtain high quality and productivity simultaneously. These factors have far­
reaching implications for the way that we build systems. 

Extend 

Refine 

Conceive 

Prototype 

Refine 

Simulation Approach Using 00 

System is built as an increaSingly 
accurate simulation of the real world 

Figure 8.13 

We can now build the core of an application by plugging together off-the-shelf components 
(from class libraries) and adding only a minimum amount of unique code. As we use the 
generated system, we will find that it does not exactly map to the way that we do things. 
Fortunately, the knowledge behind an object oriented system is explicitly spelled out in its 
classes and their methods (behaviors). We also have convenient ways to override and 
specialize attributes and behavior for certain cases and situations without disturbing the 
original knowledge. We can thus progressively refine the model of the real world which the 
system represents, until it is no longer cost-justifiable to do so. 

Chapter 8 Project Design 127 



The approach fits well with either the evolutionary delivery or timebox approaches 
mentioned previously. 

Till now we have only discussed systems development projects, but, as we know, these are 
not the only kinds of LT. projects that we will encounter. In the following paragraphs we 
will look at some of the others. 

System Maintenance 
Maintenance consumes between 60 and 80 percent of the software effort in most 
installations. Unfortunately, it is the unglamorous cousin and seldom sees the limelight. Any 
LT. manager who reduces the effort in this area can realize major savings, and free resources 
for more productive work. Corrective maintenance can be virtually eliminated by high­
quality system development, but that will still leave us with the other two categories: 
Adaptive maintenance which involves adapting existing software to new circumstances, 
requirements or technology, and perfective maintenance which refines and adds value to 
software which already meets the original specification. 

The best way to view maintenance is as a series of rapid, high-powered, full lifecycle 
development projects. If you think about it, all the phases are there: Requirements, analysis, 
design, buildJalter, test, integrate and make operational. They have to be done rapidly, 
without mistakes, and taking into account the already complex, functioning system. We 
should be using some of our best people for this. Don't hide them away - make it a vital area 
with a commensurate reward structure and visibility. Watch the turnaround. Incidentally, the 
timebox lifecycle is ideally suited to implementing a regular, rapid maintenance cycle. 
People in this area could experience the full SDLC in as little as a month, making it a great 
place through which to cycle trainees. Just make sure to place them under the control of a 
competent mentor remember it is vitally important work. 

It is gratifying to discover that virtually all the types of project that we can be called upon to 
manage can be handled by the generic lifecycle. Furthermore, they can be seen in terms of 
consistent phases, review points and baselines, as indicated in figure 8.14. 

Technology Implementation 
We will frequently be called upon to implement something other than a custom-written 
software system. This could be installing a new mainframe or communications network, or 
the implementation of a new software product, such as a database or development 
environment. These projects are different from development projects. Usually the 
requirements are much clearer. The hard stuff comes in the logistics, and the integration 
testing to make sure the new technology really works in the real situation. Here you will rely 
much more on your management skills than on your technical development skills. A sample 
lifecycle for technology implementation is shown in figure 8.14. You will notice that it still 
fits within our normal project lifecycle structure. 

Package Implementation 
It frequently makes sense to buy rather than build. Unfortunately, packages seldom fit "as 
is", particularly in operational areas of the business. This means that a package implementa-

128 Managing Information Technology Projects 



Information Technology Implementation Methodology 

Professional 
Systems 
oevralpPlTl~t 

End-User 
()e¥elopment 

Package • Technology 
Ir:nl?~mentatjon • Implementation 

I High-Level Planning I 
Conceptual~. ================================;-;::========:::; Departure 

Business Req. 
Definition 

Om.rRti,nnAI~==================~ ~=====_==::::;. Requirements 
I Architecture • 

Application Requirements Definition 

i Definition I p ,.. ; 
:5Functional ::;====::;-;::====:::::::;--;:::=======-~=====~' re Imlnary (I) 

Jl Design ~ 

~ Allocated Critical a: 
Design 

Product ;=========================================~ Product Acceptance 

Installation ~========================================:::; Post 
Implementation 

© 1991. 

Alternative Lifecycles Figure 8.14 

tion project is a combination of a technology implementation project (putting in the thing 
you buy) and a system development project (specifying, designing, making and implement­
ing the changes). 

Consistent Management Approach 
Referring to the Alternative Lifecycles diagram in figure 8.14, you will note that it is 
possible to manage a variety of project types using a standard management framework. This 
framework is consistent with the configuration management discipline mentioned in 
introductory chapters. We will encounter it again in chapter 14. 

Methods, Techniques and Standards 
It is vital before you proceed with the project to have clearly identified the methods, 
techniques and tools that you propose to use. These will include the methodology which you 
will follow for technical tasks (e.g., your SDLC, sequence of tasks, Quality Assurance 
approach and review process), the specific techniques that you will employ (e.g., entity 
modeling, functional modeling and prototyping) and the tools that you intend using (e.g., 

Chapter 8 Project Design 129 



languages, compilers, utilities, and management software). 

It is very important to achieve a high degree of integration across the various components. 
This is necessary if the benefits inherent in the various approaches are to be achieved. For 
example: our chosen lifecycle must fit well with the techniques we intend to use (e.g., 
prototyping); our development approach should be weI! supported by our tools (e.g., to do 
user interface prototyping, we need a screen painter and dialogue driver). The techniques 
should also be well integrated across the lifecycle phases. There is no point developing a 
rigorous and detailed requirements specification which the designers cannot use or 
understand. The effort involved in integrating all of these components is massive and should 
not, in general, be attempted by individual system development groups. Better to choose one 
of the well-developed, documented and supported proprietary or academic methodologies 
(e.g., Information Engineering, Methodll, Tetrarch, SSADM, Merise, Gane & Sarson, 
DeMarco, Booch) and adopt this with any local modifications necessary. 

These issues should be standardized as far as possible within the organization. This will 
facilitate building skills, communication between projects, and collection of software 
engineering data. It also allows the progressive adaptation of the techniques in use which is 
vital to increased quality and productivity. 

Documentation 
We need to identify what documentation will be produced. This must be included in the 
Product Model. Suggested project documentation will be covered in a later chapter. 
Documentation of the various models and deliverables produced during completion of the 
various methodology tasks should be covered by your chosen methodology. In any case, you 
should ensure that you are clear how your work will be recorded and collated as you 
proceed. 

Project Resource Requirements 
When you have fully identified all the products which your project will produce (both 
technical and management) you can then identify the associated activities to produce them. 
These in turn will dictate what kind of skills and resources you will need to complete the 
project. 

The product model and the work breakdown structure can be used to estimate the volume of 
work required. This should give an initial quantum of feasibility and resource requirements. 
The next step is to determine the skills required, and to ensure that these are available to you. 
They may be present in the team, elsewhere in the organization, or obtainable from outside 
contractors, vendors or consultants. Other resources required, for example a development 
machine to run your tools and utilities, must be identified and their availability established. 

All resources required on the project will have associated time dependencies. We will not 
need the programmers at the outset, for example. Database design auditors will only be re­
quired at a few key points, and so on. For each resource (including people) we need to iden­
tify when they are required, to what extent (e.g., machine size, number of hours per day) and 
for how long they are required. A Gantt Chart (discussed in the next chapter) is a good 
medium for collecting this information. From this information we can construct a resource 
histogram as shown in figure 8.15. This will allow us to predict costs and cash flows. 

130 Managing Information Technology Projects 



Xi 
u ... 
~ 
o 
til 
G.I 
a: 
'0 ... 
G.I .c 
E 
~ 
z 

Resource Histogram 

Week Number 

Figure 8.15 

A bit of bureaucracy here can save us a great deal of trouble later. We can use Resource 
Contracts to record the commitment of various sources to supply resources to us. A 
suggested format is shown in figure 8.16. 

You may find that the promise "I will be available full time" is suddenly modified to "two 
hours per day excluding Mondays" when you ask for it in writing. Do not forget to include 
user personnel, management and your sponsor in your resource planning. In our experience 
as consultants, we have often been promised full participation from sponsors, only to find 
that they are always "too busy" to obtain decisions or resolve problems later on. In some 
cases we have even had to stop work on the project to get their attention and renewed 
commitment. Having the resource contracts up front lets people know that you are serious, 
and backs you up later if there are any difficulties. 

Project Team Structure 
Having obtained commitments for your resources, we can now structure the team. How we 
do this may be dictated by our organization. Where we have a choice, we should be aware 
that different structures will have a major effect on morale, productivity and the quality of 
the final product. Your job is to ensure that everyone works together to achieve the common 
goal - completion of a high-quality product on time and within budget. Since the '70s 
various project structures have been proposed. The pro's and con's of each will depend on 
the organizational culture, the leadership style and the individual's values and ability. We 
will concentrate mainly on the structures available. 

Chief Programmer Team 
The CPT concept is perhaps best known from the project that produced the IBM 360 
operating system. As shown in figure 8.17, the chief programmer (a technical wizard) works 
with the project leader (the administrative wizard). The backup programmer is almost as 

Chapter 8 Project Design 131 



I Resource Input ContractJ 

Project 10 ~cUN~a~m~e ____________ _ 
Resource Type 
Provider Date 

NameLIO From Till % Bate/Skill/Remarks 

Resource Provider Signature __________ _ 

Resource Input Contract Figure 8.16 

technically competent as the chief programmer and can stand in at any time. The librarian 
function looks after program development and documentation. Thus the chief programmer is 
relieved of all administrative duties and can focus on the technical aspects of the project. 
This approach was found to be suitable where highly complex systems are being developed 
under extreme time pressure (sound familiar?). However, the approach is built around an in­
dividual, which makes the project vulnerable. This is reduced by the structure incorporating 
the backup programmer. 

Egoless (Democratic) Programming Team 
This is the other extreme, where the programmers share the decision-making and all report 
to the project manager. There is no management hierarchy. The approach can be pleasant, 
but difficult to manage. Difficulties can also be encountered in achieving a clean architecture 
for the full product - we may end up with a camel. 

The next structures are similar, but require different management skills. The classical team 
structure is shown in figure 8.18. 

In this structure, the project manager does the planning and design work and passes this to 
small programming teams, each led by a senior programmer. This structure complements 
modular design and has formal communication channels. The design work is focused on the 
project manager who mayor may not have the necessary skills to do design work. 

A modification to the classical structure can overcome these problems. As shown in figure 

132 Managing Information Technology Projects 



Chief Programmer Team 

Backup I 
. Programmer I 

Programmer 
i 

Programmer 

Structure of Team 

Egoless Team 

Programmer 

p~(\ 
U ~ 

; \ 

O ... Programmer .r.0.\ 

I~U U Programmer 

Programmer 

Figure 8.17 

8.18, the senior programmers are replaced by analysts who manage small teams of 
programmers. The project manager looks after the managerial aspects while the analysts 
work with him as a team to produce the technical design. This structure works well, 
especially when formal development standards exist. 

Participative Management 
This is a concept whereby those who will carry out the work have a say in how it is assigned, 
estimated, and carried out. It requires careful management, but can lead to much higher 
commitment and motivation from project staff. If a manager consistently hands out work 
with unrealistic deadlines, sensible team members will soon ignore them. If team members 
discuss the specification with the manager and agree on a realistic timetable, they will have 
high personal commitment to meeting the deadline, since they have effectively promised this 
to their manager (and themselves). We need to balance this need for involvement with the 
.need to use people with the right skills, and to build those skills through repetition (as we 
discussed in the preceding chapter on estimating). We may want a separate estimating group 
to remove subjectivity, but also want our people involved in the process for commitment. 
The solution is to put them together. Using the figures, techniques and experience of the 
estimating group, our people can participate in defining the parameters for the estimate, and 
can debate the reasonableness of the estimates produced. Often this discussion will add 
detail and knowledge not originally available to the estimating group, improving the 
estimating. Our staff will have had their say and been involved, and thus carry higher 
commitment. The estimates are likely to be very realistic and this further enhances their 
credibility and the team's commitment to meet them. 

Chapter 8 Project Design 133 



Classical Structure 

o OAnalysts 

~ t~ 

000 Design Team 

/; 
0 ··.······· ><~ 

Modified Structure 

Programmers 

Programmers 

Classical Structures Figure 8.18 

Multidisciplinary Teams 
Increasingly, systems projects go to the heart of an organization's business. Often they are 
strategic in nature. This necessitates having highly skilled application area specialists (e.g., 
retailers, manufacturing specialists) on the team. We also have to deal with a plethora of in­
formation technologies (Comms, Database, Languages, File Systems, Operating Systems, 
CASE, etc.) and need to draw on experts in these areas. These factors mean that we will 
often be managing multidisciplinary teams. Research shows that multidisciplinary teams 
perform well on tasks which are nonroutine and provide significant challenges. Fortunately 
systems projects tend to be like this. A danger, however, is that we will not be able to man­
age all the individuals on the team in the same way. As we will see in a later chapter on man­
aging people, the things that motivate LS. personnel are not those that motivate the majority 
of the population. We will often need to adapt our management style to cope with this. 

Selection of Team 
As we saw in the discussion on estimating, the productivity of individuals varies dramatical­
ly. Whom you select to be on your team can make an enormous difference. Here are some 
guidelines: 

Keep it small. Try to find the skills you need in as few individuals as possible. This 
will drastically reduce communication overhead and difficulty 

• But not 100 small. Do not put all your eggs in one basket. Try to make sure that your 
small team has backup of each required skiIl in another individual, and that you 

134 Managing Information Technology Projects 



could survive the loss of key players. Effect of losses can be greatly reduced by 
having good standards and a strong commitment to producing necessary documenta­
tion. A team which communicates openly will also share their knowledge, thus 
reducing exposure. Of course the best thing to do is keep team members highly 
motivated so that they don't leave in the first place 

• Keep it high powered. Galileo reportedly said "Give me a place to stand and I will 
move the earth." The project manager's refrain should be "Give me the right people 
and I will move mountains." Strong people will overcome the difficwties you may 
encounter. Weak ones, unassisted, will not 

• Think about the future. Maybe you have to include some junior people who will not 
be as productive as your stars. But long term, you need to help them grow to become 
stars, so give them a chance. Assign a star to mentor them 

• Look for challenges. Try to find a significant challenge for each person on the 
project, one that will stretch them beyond their current abilities, but one that they can 
master 

• Keep the user on board. Make sure that there is strong and senior user involvement 
in the team 

• Look at personalities as well as skills. How are the members going to fit together? 
Where will the likely points of friction be? 

• Have very clear responsibilities. Goal and authority conflicts among ambitious, 
highly charged individuals can be a major source of friction 

Relationship to Organization 
This is another important element of project design. If we are to succeed in a usefw goal 
from the organization's perspective, then we need to understand what that perspective is, 
both at the outset, and as the project proceeds. 

It is also vital to stay in tune with the organization to ensure that our project gets the right 
resources and priorities, and that our staff do not end up in a political backwater. 

Sponsor 
The nominal sponsor of the project is of vital importance. This is the person who will 
champion (or kill) your cause at the highest levels in the organization. This person should be 
as senior as possible, commensurate with actually getting involved with the project. He 
showd promote the value of the results you produce to the organization. He should have the 
necessary clout to get decisions made and resources committed. He should also be around 
for the duration. Having a sponsor change in mid-project can be very threatening, especially 
if the newcomer is only luke-warm to the idea of the project. This is not much of a danger 
with operational-type systems, but it is a major one with personality-driven projects like 
implementation of a DSS. Try also to stay in touch with your sponsor's likely understudy, in 
case he moves on. 

Chapter 8 Project Design 135 



I witnessed the anguish of a software development group who 
had spent some 18 months of intensive, committed, productive 
effort producing a relational database management system, and 
doing it well, only to have their project canceled summarily. They 
had their heads so buried in the technical challenges, that no one 
had noticed the acquisition of a subsidiary company which 
already had a relational database product on the market. The 
subsidiary's product was evaluated and adopted immediately to 
gain market share as quickly as possible. The organization did 
not want to have a fractured strategy supporting two competing 
products, so they axed their own inhouse project. This illustrates 
the danger of becoming too introverted when managing projects. 
The project manager should have seen the risk they were 
running and taken appropriate action to get his team involved in 
the evaluation and decision making. 

The Steeri ng Group 
This is normally a committee of I.T. and line managers responsible for realizing benefits 
from LT. expenditure across the organization. You need to identify this body and its players, 
know who will support you, and who will not. You may be surprised at the divisional feuds 
that go on in corporations. 

You should also look for senior line managers who will champion your cause. 

Reporting Structures 
We need to understand what the reporting structures for the project will be. Frequently we 
will need to report to LT. management, the Sponsor, the Steering Group as well as possibly 
User Management, Quality Assurance, Internal Audit and other groups. Each of these may 
require different information at different intervals. Find out what these are. It's a bit of a 
chore, but it makes you a good corporate citizen. As a strategy, we should look to use one 
base of documentation and reports for the project, and merely collate them and alter the level 
of detail represented for various audiences. This will greatly reduce our effort in keeping the 
various groups happy. 

Quality Assurance 
As project manager, you are responsible for what your team produces. Ultimately the 
organization looks to you to produce the goods - that's why you were cryosen. There are 
many aspects to achieving quality. We will expand on these in a later chapter. As part of our 
project design, we should ensure the following: 

That there is a proper Product Model 

136 Managing Information Technology Projects 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

That there is a proper Work Breakdown Model 

That all resources (and required skills), internal and external to the team, have been 
properly identified 

That estimates are realistic 

That a good methodology and too!s have been chosen 

That we know who our sponsor is, and what the reporting structure for our project is 

That we know how to perform all tasks on the WBM (or will do. by the time we reach 
them) 

That we know what standards we are expected to adhere to in producing the requisite 
deliverables 

That the format and structure of all deliverables is l.arown and agreed 

That our project plan includes appropriate review points and recovery time to 
remedy deviations 

That we have arranged for all external resources (including reviewers) as necessary 

That resources have been committed in terms of contracts 

That all necessary training, leave and contingencies have been incorporated in the 
plan 

That we have done a risk assessment, that this is acceptable to management and that 
our project structure has been chosen to cope with the risk profile 

Clear responsibilities have been assigned for all work, at least for the next phase 

Activities and deliverables have been incorporated for any necessary data gathering 

Project Partitioning 
Most projects that we tackle nowadays are really too large to be single projects. There is a 
theory that says that beyond a certain point projects become "undoable". There is a serious 
danger that what should be a temporary structure turns into a department, with a life of its 
own. Things that should be provided by the environment become internalized (secretarial 
services, change control, librarian). When people start to see their career in the project, not. 
the organization, then you are in trouble. 

But some really large projects do succeed. Witness the creation of the space shuttle launch 
software or the creation of a major operating system. Why do these succeed? Because we 
know they are massive and difficult, we are very careful, and we apply top skills. Really 
small projects also succeed; it seems to be those in the middle that run into trouble (see 
figure 8.19). This is because we do not take them seriously enough. 

We need to adopt some of the formality and skills from the big projects to the medium ones. 
We also need to break them down into smaller, more manageable chunks which are more 

Chapter 8 Project Design 137 



commensurate with our skills and reasonable timescales, There are a number of ways to 
break a large job into several smaller ones: 

Functional Partitioning is where we develop a complete functional requirement, and 
then identify useful subsets to implement as phases, or possibly parallel projects, 
This is best done using a structure chart, rather than a dataflow modeL We can 
enhance the approach by applying value/cost analysis as discussed earlier 

Resource Partitioning is an approach where we divide up the work according to the 
specialties of different groups of resources, or individuals, For example, we may 
contract the file access modules to the database programming team, the application 
modules to the retail team, and the communications interface to another team. The 
approach requires a strong methodology with good structured techniques and careful 
management 

Typical 
Commercial 
Project 
Size 
Range 

Project Failure versus Size 

We use professional 
management who know what they are doing 

We do not use formal techniques, and 
projects fail because they are not small 
or simple enough to keep in our heads 

The projects are small and simple 

FigureS,19 

• Temporal Partitioning is where we divide the work into time-related components, 
For example, we may do all the daily processing as a subset, followed by monthly 
processing, then year-end processing, This is one way of reducing the interfaces 
between subsets. It can, with forethought, also provide a nice way of handling 
installation in a phased way 

• Spiral Approach. Boehm's spiral model allows us to partition by functionality or 
time, and then to deliver results in an incremental way 

• Data-driven Approach. Here, instead of using the functional model, we use a data 
model (Entity Model or Normalized Data Model), On this we try to find cohesive 
subsets which have high internal relatedness (cohesion) and low external relatedness 
(coupling). These are referred to as subject databases in Information Engineering 
parlance. The idea is that the underlying data structure changes much more slowly 
than the required functionality and thus forms a far better basis for partitioning. From 
a technical perspective this makes sense and the approach will greatly simplify inter­
facing and bridging requirements. Unfortunately, it usually yields a development 

138 Managing Information Technology Projects 



sequence which is the reverse of the business priorities. Some adjustment is usually 
necessary before you can sell it, unless you have particularly farsighted, patient and 
wealthy management 

• Simulation Approach. Our simulation approach provides a unique scenario. What we 
are doing is a kind of functional partitioning, but in a subtle way. We are really 
implementing the core of the application first in an unsophisticated way to handle the 
normal case. Then we will gradually refine this over time, adding more detail and 
exception handling. The system will grow organically, specializing to handle the full 
complexity of the real-world situation (or as much as we can cost-justify). Careful 
thought should be given to reaching the right abstractions to describe the common 
attributes of the situation. This is the focus of Object Oriented Analysis and Design. 
Using Object Oriented Technologies, rework is minimal 

Unfortunately, it will be some time before most commercial organizations have the 
necessary skills and infrastructure to take advantage of this approach 

We can obviously use combinations and permutations of the various approaches. Here are 
some guidelines to help you with the objectives we are trying to meet through partitioning: 

Limit duration of each build or chunk to a maximum Of nine months. The longer the 
project, the more likely that the requirements will have changed before implementa­
tion. We have found in practice that a reasonable duration is a maximum of nine 
months. Beyond this horizon, environmental and resource changes will start to have 
a significant negative impact on the project 

• Limit the size to something a small team « 10 people) can do 

• Keep the interfaces clean. This is the biggest source of problems. Try to partition so 
that minimal interaction is required between groups proceeding in parallel and 
between phases. This will greatly reduce integration effort and maintenance 

• Manage the boundaries. Explicitly define the interfaces to your chunk, both to the 
system, and to the project. Keep these definitions stable. Subject any suggested 
change to careful scrutiny and formal change-control procedures. If any boundaries 
have to change, make sure you communicate 

Communicate with related teams. Make sure the communications lines are open and 
working. Talk to verify that things are still the same, rather than not tell each other 
that something has changed 

• Deliver something before your sponsor and users get too nervous. Make sure it 
works 

Risk Control 
There is no doubt that developing software is a risky business, yet very few organizations 
perform any formal risk assessment to see if the risk can be controlled, reduced or managed. 
As project manager, it is your responsibility to ensure that your project, the organization 
sponsoring it, and the user community are exposed to minimum risk. 

Risk is the chance of something going wrong. Since our definition of project success 
included delivering to specification, on time and within budget, we incur three major types 

Chapter B Project Design 139 



I have seen projects in a major financial institution where I was 
doing external quality reviews grow and overlap in scope until 
there was a 60 percent overlap in functionality (figure 8.20). 
This had gone undetected by either team or the organization. 
Only the users were somewhat confused as to why two lots of 
"I.S. people" kept asking them about the same things. My 
reviews of the two projects, about a month apart and at similar 
phases, highlighted the overlap. Fortunately, a consistent 
methodology was in place and the models could be easily 
compared. Also fortunately, they were taking quality reviews 
seriously. If this had not been the case, the organization could 
have spent some $300 000 on developing two different, 
noninterfaced versions of the same software. 

Project A Project B 

Overlapping Functionality Figure 8.20 

of risk. These are that we will not meet the specification (quality), that we will be late, or 
that we will spend more than intended. 

The sources of risk' for our project also come in three major varieties. In a system of 
assessing risk developed by McFarlan and the Dayton Tire Co., they identified the factors as 
People, Structure and Technology. Let's look at each in turn. 

People risk comes from inadequate skills (both technical and managerial) as well as inex­
perience. Inexperience could be of a general nature, or related to the specific application area 
or technology. 

140 Managing Information Technology Projects 



Structure risk comes from the degree of change which will be introduced into the user areas 
and business procedures, the number of discrete user communities the system must satisfy, 
and the number of other systems the new one must interact with. It is also affected by the 
experience of the organization with technology, and prior project history. 

Technology risk comes from using new or untried technology. It is affected by the stability 
of products and suppliers used. Using one new technology on a project (e.g., a new 
compiler) is acceptable, but we are looking for trouble if we use a new operating system, 
database, compiler, code generator, CASE tool and communications monitor together. 

McFarlan developed a questionnaire to assess the various risk factors. This is shown starting 
on page 143. 

To determine the risk score proceed as follows: 

Evaluate all questions on the questionnaire. Where there are multiple factors which affect 
risk (e.g., "What hardware is new?") you can check more than one answer. Take the score 
associated with your answer (or sum of multiple answers) and multiply this by the weight of 
the question. Add these up for each section (Size, Technology, Structure). This will give you 
three risk scores. These should be compared to the norms for the organization (which you 
will of course accumulate!) and any high scores should sound alarm bells. If the risk in a 
particular area is high, then the questions related to this section should be reviewed to 
determine the causes. Perhaps the project can be restructured to use less new technology, to 
reduce the size of the project, or the number of user areas involved? We should use this 
information for project design, not just a risk ranking. The questionnaire provided is 
illustrative only: you may want to anlend it for your organization, or for different types of 
projects e.g., package implementation. 

Risk should be assessed at the beginning of the project and then at the review of each phase 
as shown in figure 8.21. It should display a decreasing exposure as the uncertainties in the 
project are resolved and assumptions are confirmed (or adjustments made). Any increase in 
the risk score should be cause for alarm and remedial action. 

Risk: 
I 

Time 

Risk Assessment 

rroject Review Points 
I 
I 
I 
I 
I 

Figure 8.21 

Chapter 8 Project Design 141 



Using the system portfolio approach to projects, it is acceptable to have some high-risk, 
high-return projects. These are the ones with which you attempt to gain competitive 
advantage, in the full knowledge that they are risky and may fail. They should represent an 
order of investment that the organization can afford to write off if unsuccessful. If you find 
that your whole portfolio is tending to be high risk, then serious re-examination is required, 
possibly leading to major strategy changes. 

Where high-risk projects are tackled, we should be aware of this before we commence, so 
that we can apply the necessary rigor and formality to their management. In this way, the 
risk can be substantially reduced. Some ways to reduce risk include: 

Breaking larger projects up into smaller components 

Minimizing the number of interfaces and dependencies between projects 

Using high-level skills, and fewer project team members, without running the risk of 
relying exclusively on a single team member 

• Not attempting too many new things on major projects 

• Getting outside assistance the first time we attempt something, until we have built 
the internal skills 

Decreasing the Manageable Unit of Work which will result in identifying more tasks 
in the project plan, and closer supervision of individual activities 

• Ensuring there is a strong, user-oriented steering body in place to supervise the 
overall project direction 

• Ensuring high levels of user and management commitment and involvement in the 
project. 

Summary 
Project design, like other design activities, is a creative, experience-based activity. It is an 
outlet for the creative skills which you exercised earlier in your career in the application 
analysis and design areas. It is a crucial activity, and can have a major impact on the overall 
success of the project. Some organizations have set up central development support groups, 
with highly competent project managers seconded to them, to assist new project managers in 
devising good project plans and structures. 

142 Managing Information Technology Projects 



McFarlan Risk Questionnaire 
(Adapted) 

Size 

Total systems and programming mandays for system: 
() 12 to 375 Low=1 
( ) 375 to 1875 Med=2 
() 1875 to 3750 Med=3 
( ) Over 3750 High=4 

2 What is the project estimate in calendar (elapsed) time? 
() 12 Months or less Low=1 
() 13 Months to 24 Months Med=2 
() Over 24 Months High=3 

3 Number of projects within the system? 
0 One Low=1 
0 Two Med=2 
0 Three or more High=3 

4 Most projects in the organization fall in the fol1owing 
range for systems and programming mandays: 
() Small- up to 250 Mandays Low=! 
0 Medium - 251 to 750 Mandays Med=2 
0 Large - over 750 Mandays High=3 

5 Average calendar (elapsed) time per project? 
() Less than 6 months Low=! 
() 6 to 12 months Med=2 
() 12 months or more High=3 

6 Length of economic payback: 
( ) Less than 12 months Low=1 

Med=2 
High=3 

() 12 to 24 months 
( ) Over 24 months 

7 Who will perform the work: 
() Mostly in-house personnel 
( ) Significant portions by in-house staff 
( ) Mostly contractloff-site personnel 

Low=1 
Med=2 
High=3 

Weight 

(5) 

(4) 

(1) 

(1) 

(1) 

(2) 

(2) 

8 Number of departments (excluding I.T.) involved (4) 
() One Low=1 
() Two Med=2 
() Three or more High=3 

Chapter 8 Project Design 143 



9 Approximate number of user department personnel required to run 
and operate the system? (1) 
() Up to 20 Low=1 
( ) 20 to 50 Med=2 
( ) Over 50 High=3 

10 How many geographic locations will the system address? (2) 
() One Low=l 
( ) Two or three Med=2 
() More than three High=3 

11 How many existing information systems must the new one 
interface with? . (3) 
() None or one Low=} 
() Two Med=2 
() More than two High=3 

Structure 
1 The system is best described as: (1) 

() Totally new High=3 
() Replacement of existing manual system Med=2 
() Replacement of automated system Low=! 

2 What percentage of existing functions are being replaced 
on a one-to-one basis? (5) 
() 0- 25 % High=3 
() 25-50 % Med=2 
() 50-100 % Low=! 

3 What is the severity of procedural changes in the user area as a 
result of introduction of the system? (5) 
() Low Low=! 
() Medium Med=2 
() High High=3 

4 Proposed methods and/or procedures: (2) 
() First of a kind for I.T. High=3 
() First of a kind for User High=3 
() Breakthrough required for user acceptance High=3 
() Breakthrough required for I.T. implementation High=3 
() Routine/none of the above Low=O 

144 Managing Information Technology Projects 



5 Does the user organization need to change to meet the requirements (5) 
of the new system? 
() No Low=O 
() Minimal Low=1 
() Somewhat Med=2 
() Major High=3 

6 Is new/unfamiliar user~related hardware required? (1) 
() None Low=O 
() Hardware user can easily adapt to Low=1 
() Hardware requiring extensive user education Med=2 

7 What degree of flexibility and judgment can be exercised by 
the systems designers in the area of systems outputs? (1) 
() Very little Low=1 
() Average Med=2 
() High High=3 

8 What degree of flexibility and judgement can be exercised by 
the systems designers in the area of systems processing? (1) 
() Very little Low=1 
() Average Med=1 
() High High=3 

9 What degree of flexibility and judgment can be exercised by 
the systems designers in the area of database content? (1) 
() Very little Low=1 
() Average Med=1 
() High High=3 

10 What is the overall rating of predetermined structure for the new 
system? (2) 
() Highly structured, requires little or no user 

procedure change Low=1 
() Medium structured, some user change Med=2 
() Low structure, high degree of user change High=3 

required 

11 Is this project highly or totally dependent on another project? (5) 
() No Low=O 
() Yes, other project(s) low risk Low=1 
() Yes, other project(s) high risk High=3 

Chapter 8 Project Desiqn 145 



12 How many estimating questions were unanswered or had low 
confidence answers? (3) 
() None Low=O 
() 1 - 10 Low=1 
() 11 - 20 Med=2 
() More than 20 High=3 

13 What is the general attitude of the user? (5) 
() Poor - anti LS. High=3 
() Fair - unsure or reluctant Med=3 
() Positive - good relationship Low=O 

14 How committed is senior management to the system? (5) 
() Somewhat reluctant/unknown High=3 
() Adequate Med=2 
() Extremely enthusiastic Low=I 

15 Has a joint I.T.lUser team been established? (5) 
() No High=3 
() Part-time user involvement Med=2 
() Yes, full-time user involvement Low=O 

Technology 
1 Is additional hardware required? (1) 

() None Low=O 
() Central processor type change Low=1 
() Peripheral/Storage device changes Low=1 
() Terminals Med=2 
() Change of platform, e.g., MinilPC replacing 

Mainframe High=3 

2 Which hardware is new to your organization? (3) 
() None Low=O 
() Central processor type Low=1 
() Peripherals or Storage devices Med=2 
() Terminals Med=2 
() Mini or microcomputers Hi gh= 3 

3 Is special nonstandard hardware required? (5) 
() None Low=O 
() Yes High=3 

4 Is system hardware the first of a kind for the vendor? (3) 
() No Low=O 
() Yes Med=2 

146 Managing Information Technology Projects 



5 How many vendors are involved in supplying the hardware? (2) 
() One Low=O 
() Two Low=! 
() More than two JIigh=3 

6 Is system networked (online to multiple locations)? (1) 
() No Low=O 
() Shared system in one location Low=1 
() Two or more locations Med=2 

7 Is the system success dependent upon new hardware? (3) 
() No Low=O 
() Somewhat Low=1 
() Very heavily High=3 

8 The system is (1) 
() Batch Database Low=1 
() Online data communications Med=2 

9 Programming language used? 
() COBOL Low=l (1) 
() Other 3GL Med=2 
() Well-established 4GL Med=2 
() Assembler/other 4GLILogic Programming High=3 

10 Is the system software (other than the OS) new to the I.S. team? (5) 
() No Low=O 
() Programming language High=3 
() Database Management System High=3 
() Data Communications Software High=3 
() Other - specify High=3 

11 Is the system software new to the vendor? (3) 
() Yes Med=2 
() No Low=O 

12 Are program packages being used? (1) 
() No High=3 
() Yes, to a small degree Med=2 
() Yes, to a large degree Low=l 

13 How good is vendor/supplier support of the program package? (1) 
() Unknown High=3 
() Adequate Low=1 
() Good Low=1 
() Not applicable Low=O 

Chapter 8 Project Design 147 



14 What is the system complexity? (3) 
() Straightforward Low=1 
() Average Med=2 
() Complex with many interactions lligh=3 

15 How knowledgeable is the user in l.T.? (5) 
() First exposure lligh=3 
() Previous exposure, but limited knowledge Med=2 
() lligh degree of capabHity Low=l 

16 How knowledgeable is the user representative in the proposed 
application area? (5) 
() Limited High=3 
() Understands concepts but no experience Med=2 
() Has been involved in prior implementations Low=1 

17 How knowledgeable is the I.S. team in the proposed 
application area? (5) 
() Limited lligh=3 
() Understands concepts but no experience Med=2 
() Has implemented similar systems before Low=1 

148 Managing Information Technology Projects 



Case Questions 

MyWay Organizer 

08.1 
Consider what type of systems lifecycle would be appropriate for the MyWay Organizer 
project. Be prepared to justify your answer. (10 mins) 

08.2 
What kind of team structure would you like to use on the project? Why do you think this is 
the best way to organize the team? (10 mins) 

08.3 
Prepare a risk assessment for the organizer project. (20 mins) 

Handover Trust 
08.4 
You have been asked to determine the risk profile for the New Business project. You have 
interviewed users and managers and determined the following: 

The system will be used by a variety of departments including: Quotations, New 
Business, Underwriting, Medical Assessments, Branch Sales Support. There will be 
about 2000 users of the system in total 

Most projects to date at Handover have been between 2000 and 4000 mandays 

Economic payback will be evident as soon as the system is operational 

The system will completely replace the old applications processing system 

The project will be dependent upon the successful implementation of the Quotations 
system now being re-written 

Users are eager to participate in prototyping, but nervous of potential changes in their 
work patterns 

• Mr. Renfrew is busy forming a steering body which will include senior LT. and line 
management 

• The New Business Divisional Manager has been seconded half time to the project 

Chapter 8 Project Design 149 



Vendor support has so far proven good 

• Many members of the development team will be recruited externally because of the 
current lack of client server skills in the organization 

Identify sources of unacceptable risk. How could you counter these? (1 hour) 

Qa.5 
Mr. Renfrew and the board are uncomfortable with long implementation times given the 
criticality of the New Business project to the business. Could you apply prototyping, phasing 
or timeboxing techniques to this project to address these concerns. Elaborate and indicate 
how you would proceed. (30 mins) 

ThoughlWell Books 
Qa.6 
Using your (or provided sample) team selection from Q5.5, decide how you would structure 
the team. Justify your selection of this structure. (20 mins) 

Qa.7 
Determine the major source of risk on the ThoughtWell project. How could you reduce this 
risk area? (40 mins) 

150 Managing Information Technology Projects 



Introduction 

gPlanning 
Techniques 

A wide range of techniques is available to assist us in planning our project, portraying the 
plan, tracking progress and revising the plan as necessary. This chapter will introduce these 
techniques. They will be used whenever we plan or re-plan, as shown in figure 9.1. 

Project Lifecycle 

Collect 
Results 

Check 
Quality 

Assess 
Progress 

Until AU Tasks 
Are Complete 

/PerPhase 

Figure 9.1 

Chapter 9 Planning Techniques 151 



The simplest thing we can do when we begin to contemplate a project is to list the activities 
and the estimated durations. Let us assume that we are devising a project to produce a paper. 
We could list the activities like this: 

Task 
Select Topic 
Locate Literature 
Draft Outline 
Write Draft 
Revise Draft 
Produce Final Copy 

Estimated 
Duration 
2 weeks 
8 weeks 
1.5 weeks 
4 weeks 
4 weeks 
4 weeks 

This will give us an idea of the duration and the activities involved, but may not give as 
much detail as we would like. We can decompose the tasks in the form of a Work 
Breakdown Structure to get a much better understanding of how the detail will be 
accomplished as shown in figure 9.2. 

Work Breakdown Structure 

/ .. . ... 1 
] Produce Paper I 
" ) 

Figure 9.2 

This gives us a different perspective on the composition of the project and the activities that 
will contribute to achievement of the overall goal. We still cannot see, however, when 
activities will commence and terminate, and which activities can occur in parallel. There are 
several varieties of bar charts which can assist us to depict these aspects. 

Gantt and Milestone Charts 
These are among the most popular and longest-standing project planning techniques. Gantt 
or bar charts were introduced around 1903 by the Frenchman Henri Gantt for planning and 
controlling military campaigns. They are simple and effective. Essentially we portray time 
on one axis, usually the horizontal. Bars are used to depict tasks or activities, and indicate 
their start and finish times. It is easy to see when tasks start and finish, and which tasks will 

152 Managing Information Technology Projects 



occur in parallel. 

Milestone charts are similar in depicting events against time, but do not show start times or 
durations, only the planned (and maybe actual) completion dales of events. They normally 
use a triangle as a symbol for the milestone. Only major events are shown e.g., completion 
of requirements specification, completion of technical design and installation. Milestone 
charts are very useful, providing management with an overall summary of the project in a 
visual and concise manner. They can obviously be combined with bars on the same Chart, 
thus allowing us to see both the detail and a summary at the same time - see figure 9.3. 

Both techniques are easily accomplished manually, Or automated through either a magnetic 
board, or computer software. 

Write Essay 

Select Topic 

Locate Literature 

Draft Outline 

Write Draft 

Revise Draft 

Produce Final Copy 

Do Layout 

Do Spell Check 

Proofread 

Collate & Bind 

Project Complete 

Jan Jan 

Note the indentation used to identify subtasks below a summary task 

Gantt Chart with Milestones Figure 9.3 

One limitation of the Gantt format is that it does not show dependencies easily (although 
some notations and software packages do have techniques for representing these). It is easy 
to see when tasks follow on from others, but it is not immediately apparent whether they are 
dependent upon the preceding task or not. This information becomes vital when we have to 
plan time-critical projects with many complex dependencies between a large number of 
tasks. In these situations, the network analysis techniques discussed in the next section 
become valuable. 

Chapter 9 Planning Techniques 153 



Network Techniques 
These allow us to portray the dependencies between tasks graphically, utilizing a network of 
nodes and lines. There are two major notations: 

• Task on line notations put the activities on the lines, and use nodes to depict events. 
Dependencies are indicated by sequence of tasks in the network. In figure 9.4 Select 
Topic must occur before either Collect Literature or Draft Outline can commence; 
and both of these must be complete before Write Draft can begin. In this notation, 
task Select Topic would be referred to as activity 1-2; Write Draft as activity 3-4. 
Note that we need to distinguish between the two parallel activities, and these would 
be termed activities 2-3a and 2-3b respectively. Notice that the duration of tasks can 
be recorded on the lines representing the activities. 

a) Collect Literature 

2 

.~ 
, \...f\ Write Draft 

~ ... _'.5 r 4 

f\ 
.. , 4 
\..J 

Select Topic 

b) Draft Outline 

Task on Line Notation Figure 9.4 

One advantage of this notation is that the length of lines between nodes can be scaled 
to represent the expected duration of the task as in figure 9.5. In this way, the 
diagram can give a very good visual indication of start dates, end dates and parallel 
activities, as we had with the bar chart notation. We, of course, also have the 
dependency information shown which is missing in the Gantt notation. Where a task 
is shorter than another performed in parallel, we may need to introduce "dummy" 
nodes to cope with this. Dependency lines with 0 duration are then used to link to the 
node from which dependent tasks will proceed. Two disadvantages are that the 
network can be very difficult to maintain and keep up to date manually, and that 
large networks can become confusing and difficult to layout in a manner which is 
easy to assimilate, 

The task 2-5, Draft Outline, is shorter than the other one in parallel between nodes 2 
and 3. It is said to have float time of 6.5. This is the amount of time that its start 
could be delayed w.ithout affecting the date upon which the succeeding event, 3, 
would occur. We will return to this concept when we discuss network analysis later 
in this chapter. 

154 Managing Information Technology Projects 



Select 

~
OPiCf\ 

1 2 
2 

Scaled Network Diagram 

Collect Literature 

8 Write 
Draft 1\ 

4 ·v 

Figure 9.5 

Task in node notations put the activities in the nodes, and use lines solely to denote 
dependencies as in figure 9.6. This is also called a precedence diagram. Tasks are 
easily identified by the number or identity of the node, with no ambiguities. 
Unfortunately, it is not easy to scale the diagram based upon the duration of the task 
as we could with the previous notation. This notation is easy to automate and is 
particularly favored in project management software packages. It is easy to include a 
host of information for the task in the node box (e.g., Description, estimated effort, 
estimated duration, resources assigned, etc.). The same limitations as the task on line 
notation apply with respect to legibility of complex networks. 

Precedence Diagram 

Collect 
Literature 

Draft 
Outline 

Figure 9.6 

Chapter 9 Planning Techniques 155 



Ladders, Leads and Lags 
These are terms which you will encounter with respect to network diagrams. A lead is a 
forced wait before a task can commence. An example would be scheduling a Post 
Implementation Review on a project for two weeks after installation date. There may be no 
intervening activity planned, but we have to wait anyway. A lead is thus a line on the 
network with a duration, but no description or resources. A lag is a forced wait after an 
activity before an event can occur. An example would be in building a floor - you might 
throw a concrete floor, then have to wait three days for it to "cure" before you cover it with 
vinyl tiles. In some cases, we can have both a lead and a lag, and this structure is referred to 
as a ladder. An example of this would be I aying pipe in a trench. We may have 200 meters to 
lay, in 20-meter sections. Let us say that it takes us 2 days to dig 20 meters of trench, and 
half a day to lay a section of pipe. This could be represented as shown in figure 9.7 . 

. 5 

Test Flow 

Ladders, Leads and Lags Figure 9.7 

A systems example similar to this would be testing programs in parallel to writing more, 
once the initial program is complete. 

Deadly Embraces 
This is a problem common to both forms of network notation. If we specify a circular 
dependency, we create an impossible situation where Task B is dependent upon the 
completion of Task A, but Task A is waiting for Task B to complete. This seems obvious and 
easy to avoid, but can occur surprisingly easily once we start to define dependencies for a 
large number of interrelated tasks. Of course, if your tasks are truly described in this way, 
then you will need to examine the way in which the work has been partitioned and resolve 
this before proceeding. Some automated project management tools will warn you of circular 
dependencies gracefully, others will simply crash or go off into "never never" land. 

The above presents a problem for iterative lifecycles, where you may wish to cycle through 
a set of tasks more than once. One way to handle this is to repeat the activities in the 

156 Managing Information Technology Projects 



network, qualifying them each time as in figure 9.8. This also provides a practical way to 
limit the number of iterations. This is necessary to successfully use any of the iterative 
techniques in any case. 

Prototype 
~ Screens 

~0~ 

Controlled Iterations 

Optional Dependencies 

Iteration 1 

Iteration 2 

Iteration 3 

Update 
Data 

~ab 

Figure 9.8 

Sometimes we will have the situation where we need to wait for one of two preceding tasks 
to finish, not both. That is, we can commence the dependent task when either of the other 
tasks completes, whichever occurs first. This can be shown in the network notation as in 
figure 9.9. 

Showing Summary and Sub-tasks 
Consistent with the principles of work breakdown and keeping presentation versions simple, 
we frequently want to hide some detail which we do not need to concern ourselves with at a 

Chapter 9 Planning Techniques 157 



Write Program A 0 -_ .. 
/ " 

// , 
,ry_// Test 1st Pro , 

~ Completed 
'­ , --"'D' .:"'. //' 

Write Program B 

Optional Dependencies 

Test 2nd Program Completed .. 

Figure 9.9 

particular time, or for a particular purpose. An example would be a turnkey installation in­
volving both hardware installation and software development. The tearn working on the 
hardware installation will want to see tasks related to this in detail, but only a summary for 
the software development, while the tearn working on the software development will only 
want to see their own tasks in detail, while showing the hardware installation at a summary 
level. We also saw in an earlier chapter that it is useful to collapse past and future phases of 
the project so that we can concentrate on the detail of the current phase. Sometimes we want 
to manage different parts of a complex project discretely, hiding the complexity of in­
dividual components from the overall management view. All of the above requirements 
mean that we need ways to show summary tasks which include a number of sub-tasks, and 
sub-projects which themselves decompose into more tasks. 

The requirement is easily accomplished on the Gantt chart by using indentation for sub­
tasks. Each level of indentation indicates that these tasks are sub-components of the parent 
task. The parent task is automatically a summary of the sub-tasks indented below it. This can 
be designed to accommodate sub-projects, or the hierarchy from the work breakdown 
structure, If the planning is automated, the summaries can be collapsed or expanded at will 
to suit the current purpose. This is much like the idea of an outliner used for developing the 
structure of a document. Some practitioners use a Dewey-style nOlation to indicate the 
levels, e.g., 1.2.2.4, etc. In our experience this should be avoided because of the maintenance 
overhead involved in keeping the numbers in step with the WBS structure, unless it is 
supported by the tool that you use. 

Another approach is to show sub-projects as a single bar on a high-level Gantt chart, and to 
have a separate chart which breaks these down into their component tasks. 

On the network notations, summary tasks are created as hamnwcks between the beginning 
and end nodes of the block of sub-tasks as in figure 9.10. The hammock represents all 
activities between the two points. In automated packages, it should summarize all durations, 
costs, etc. from the intervening tasks. We normally use these at least for the phases in an LT. 
project. 

158 Managing Information Technology Projects 



Define Requirements 

Functional 
Modeling 

A Hammock (Summary) Task 

Check 
Consistency 

Figure 9.10 

Some systems allow the creation of sub-projects by linking the start and end node of a 
separate network diagram to interface nodes in the higher level project plan - see figure 9.11. 
This technique can be useful for linking related projects, rather than those which are strictly 
sub-projects (where the sub-project would be viewed as a single task in the summary 
project). 

Assigning Resources 
Once we have determined our activities and their dependencies, we need to assign resources 
and responsibilities. On the Gantt chart, this can be achieved by showing a bar for each 
resource under each activity where that resource participates as in figure 9.12. This also 
allows for resources to participate in only part of a task's duration. It does not easily 
accommodate the situation where the resource is allocated for the whole duration, but only 
for some proportion of time, e.g., four hours a day. 

Resources cannot easily be shown on the network task on line notation. They can be shown 
on the precedence network notation by coding the nodes or recording textual infonnation in 
the node. One way to overcome the problem on a network diagram is a chart called a 
Gozinto chart (figure 9.13). This is not named after Mr Gozinto, but derives its name from 
goes into. It shows the necessary inputs, i.e., resources (human and otherwise); which go 
into each step of a process. 

Analyzing the Network 
Once we have set up our project plan with the dependencies and resources, there are other 
types of analysis that we can apply to see if it is a sound plan. We may wish to establish the 
risk inherent in the way that we have organized things, or to determine which activities are 
really crucial to completing the project on time, or what the likelihood of meeting the 
planned end date is. The following sections will deal with popular techniques addressing 
these issues. 

Chapter 9 Planning Techniques 159 



De/)ne 

:'~Cj 
:~ 
I Yen'J'y Penorn7an&e 

Serup 
CO/J/)gvrahMs 

SerUp 
TrO/1$BC'oOns 

Subproject with Interface Events 

I 
I 
I 
I 
I 
I 
I 

I 
I 
\ 
I 
\ 

I 

\ £)e/er/77//7e 
II Respar,'se Tlmes 

\ 

MO/J/lor 
Srao/)'/ty 

Total Project Duration (Calendar Time) 

Figure 9.11 

By adding the durations of the longest task between each pair of nodes, we can compute the 
total project duration. If a start date is assigned to the begin node, we can compute an earliest 
finish date. This will be the date on which the project will finish, assuming that no activities 
overrun their scheduled durations. 

It is quite common to allocate a range for the estimate of each activity, as was advised in 
chapter 7. The low end of the range will be the shortest duration for the activity, and the 
upper end of the range will be the longest duration for the activity. If these are applied to the 
network, we can calculate the most optimistic end date for the project using the shortest 
durations, and the latest expected end date using the longest durations. 

160 Managing Information Technology Projects 



Locate Literature 

Joe Digger 

Mary Finder 

Joe Digger 

Joe Digger 

Produce Final Copy 

Joe Digger 

Mary Burns 

Jan Jan 

Gantt Chart with Resources 

Project 
Definition 

Users 

Users 

Quality Assurance 
Representative 

Prototyping 
Tool 

Requirements 
Specs 

Prototype 

Quality Assurance 
Reviewer 

Gozinto Chart 

Jan Mar Mar 

Figure 9.12 

Analyze Requirements 

Review with User 

Prototype Inputs 
& Outputs 

Obtain Critical 
Review 

Figure 9.13 

Chapter 9 Planning Techniques 161 



To compute the earliest time for an event: 

Assign an earliest time of the start date to the origin event 

For each event, add the earliest time for its predecessor event to the elapsed time for 
its predecessor activity. This sum is the earliest time for the event 

• If an event has two or more predecessor events (i.e., if the event is a merge event) 
apply the rule above to each predecessor event-activity combination and use the 
largest sum as the earliest time for the event. 

Another useful figure is the latest event time. This is the latest date by which the task 
preceding it should complete if the end date is not to be affected. To compute the latest event 
times: 

• Set the latest time for the terminal event equal to the computed earliest time for the 
terminal event 

• For each event, subtract the elapsed time for its successor activity from the latest 
time for its successor event. The result is the latest time for that event 

If an event has two or more successor events, apply the rule above to each successor 
activity-event combination and use the smaller number as the latest time for the 
event 

The slack time for an event is given by subtracting its earliest time from its latest time. This 
is a measure of the delay which the event could suffer without causing the actual time for the 
terminal event to exceed its earliest time (in other words to allow the project still to be 
completed within the original estimate range). 

Critical Path Analysis 
Critical Path Method (CPM) was first used at Du Pont during the late 1940' s. It uses 
network analysiS to identify those activities which are critical to the early delivery of the 
final product of the project. These are the activities which have no float time - the longest 
activity between any pair of nodes. See figure 9.14. The critical path in the network is the 
path which proceeds through these activities. It is normally deSignated on the diagram by a 
bold line (or a colored line). The key thing to realize is that if anyone of these activities 
takes longer than planned, the end date of the entire project will be pushed out (slip). The 
critical events are those which have the smallest amount of event slack as defined above. 

By monitoring the critical path activities and events, the astute project manager can avoid 
delays which would cause the project to Slip (not meet the end date). When the project is 
large and involves many interrelated activities, this can be a valuable tool to focus scarce 
management attention. It requires careful monitoring of actuals, and revision of estimates to 
succeed, however, since variations in the duration of events can shift the critical path to a 
new set of activities. It is perfectly feasible to have more than one critical path if events 
between the same pair of nodes have the same estimated durations, as shown in figure 9.15. 

162 Managing Information Technology Projects 



,1 .•.. · w. Pt~j~: Writ~a'nEs~~y . 
. ' ,-'.x·,w¢·"" •. -. 

Locate Literature 

8 .... ' ... Select TOPiC .. ~... ... 10 
,1 \:)" 
" . 2 . . "Draft Outline 

I 
I 

I 

I 

I 
I 

I 

2 

Produce Final Copy. 6 

5 ... 

Subproject 

I Layout 

(~----.!<@ 
Spell 
Check 

Proof-

Critical Path Method 

... ... 

Revise Draft 
5 

Activity Event 

\ / 
Write Draft 

5 

Figure 9.14 

Program Evaluation and Review Technique (PERT) 
PERT came to prominence during the Polaris submarine project, about 1958. It was jointly 
developed by the United States Navy Special Projects Office, consultants from Booz, Allen 
and Hamilton Inc., and Lockheed Missile Systems Division. The idea behind the techniques 
was to provide senior managers with better information on the status of projects, and 
particularly to control slippages. The team charged with coming up with recommendations 
for improving performance in these areas felt that the two major factors were detailed, well­
quantified estimates for planned activities and precise knowledge of the required sequence in 
which activities are to be performed. 

Because estimates, as we have seen, are frequently uncertain, the team strove to devise ways 
in which to quantify the degree of uncertainty. This led to the development of the statistical 
estimation technique which was the major contribution of the PERT approach. Dependen­
cies were catered for by using network planning diagrams. It is interesting that all network 
diagrams are frequently referred to these days as "PERT charts". See figure 9.16. The uni­
que feature of PERT is the technique used to estimate elapsed time for activities, which ac­
commodates uncertainty. 

Chapter 9 Planning Techniques 163 



Multiple Critical Paths 

Finalize Contract 

5 

Define New 
Business Policy 

30 

Figure 9.15 

Essentially, it works like this: After the network has been prepared to represent the activities 
and dependencies, three elapsed time estimates are obtained for each task. These estimates 
are used to compute a single "best" estimate of the time that the activity will take, and the 
degree of variability that can be expected. The computed best times are used to calculate the 
critical path duration for the project. The variability associated with each task is accumulated 
along the network paths to arrive at a variability factor for each event. These figures are then 
used to make inferences about the likelihood of that event occurring at a particular time. 

The PERT approach dictates obtaining the estimates from the people who will actually 
perform the task, or supervise it. This is done because the people involved should have the 
best feel for the degree of difficulty the task may present, and can give more accurate 
estimates. While there is certainly subjectivity in the estimates they will make, they should 
be able to predict the minimum and maximum times in a range with some accuracy. 
Between the pessimistic and optimistic estimates, there is a "most likely" point, which the 
estimators were also asked to identify. This can be done using the Delphi technique 
discussed in the chapter on estimating. The difference between the pessimistic and 
optimistic estimates (the range) is indicative of the degree of certainty or variability which 
can be expected in the task performance. Estimators will produce very narrow ranges for 
well-understood or routine tasks, and wider ranges for less well-understood, unique or 
unstructured tasks. The estimated durations should obviously take into account the various 
factors influencing durations previously discussed, for example, number and skill of 
resources available, complexity of task, etc. The three estimates should be made using 
consistent resource assumptions. 

Most-likely estimates should be made first. This should be followed by the optimistic 
estimate using the same resource levels, but assuming everything goes particularly well. 
Finally, the pessimistic estimate is made assuming the same resources, but that difficulties 
are experienced (i.e., everything goes badly). This should exclude major catastrophes, such 
as acts of God, however. The estimate for a task should be done in isolation, and should not 
include the influence of a predecessor task being late. 

Once the three estimates are obtained for each task in the network, the best estimate or 
expected time is computed as follows: 

164 Managing Information Technology Projects 



At Any Node: 
Free Float= ES(X+ 1 )-EF(X) 
Total Slack= LS(X)-ES(X) 

PERT Structure 

One of the several notation conventions 

Early Early 
Start Finish 

Late Start Late Finish 

:[ .. i~~ I. 
Job-id Job-Time Estimate 

Figure 9. 16 

t :::: optimistic time + 4(most likely time) + pessimistic time 
e 6 

This formula is based upon the assumption that the probability of an activity taking a certain 
time is a beta distribution whose standard deviation is one-sixth of the range between the 
pessimistic and optimistic time estimates. and whose mode is equal to the most-likely time 
estimate. 

The variability (degree of uncertainty) is called a standard deviation and is defined as: 

SD - Pessimistic time - optimistic time 
6 

The standard deviation for the earliest time for an event is calculated from the standard 
deviations of the activities of the longest (in time) path leading to the event. This is done by 
squaring the standard deviation for each activity, summing the squared standard deviations, 
and then taking the square root of that sum (the "root mean square"). 

Chapter 9 Planning Techniques 165 



A further feature of PERT allows the calculation of the probability for accomplishing an 
event on or before its scheduled date (or other date). This uses statistical techniques which 
we will not detail here. We will touch on the behavior of the technique briefly. If the 
scheduled time for the event is before the earliest time for the event, then the probability of 
accomplishing the event by its scheduled date is less than 50 percent. If the scheduled time 
for the event is later than the earliest event time, then the probability of accomplishing the 
event before or on its scheduled time is greater than 50 percent, and the later it is scheduled, 
the higher the probability will become. 

PERT was designed to provide continuous program evaluation. This involves the collection 
of actual completion dates, and revision of estimates as the project progresses. 

PERT has received wide attention and been widely applied. In LT. projects, we seldom need 
to implement the full rigor of formal PERT, unless we are dealing with very complex, large 
projects with a large number of activities and interdependencies (e.g., creation of a new 
operating system). In commercial systems, we would normally employ the network planning 
techniques, and possibly the approach of obtaining three estimates and calculating an 
expected time, but seldom go on to do all the probabilities and revise these as we progress. 
We contend that we can get just as much useful infonnation for project tracking in a far less 
arduous manner, by using Work Breakdowns and Product Models to track progress. We will 
discuss this in more detail in the chapter on Project Reporting. 

Risk 
The network diagram can also be analyzed for undue risk in the construction of the project 
plan. If we examine the network, we should regard the following as danger signals: 

• An excessive number of activities scheduled in parallel. Typically, the manager can 
only handle about five parallel activities. If more activities are scheduled in parallel, 
risk is increased. The chances that "something will go through the cracks" become 
much higher. 

• Too little float time in later stages of the project. If we find that virtually all the 
activities toward the end of the project have little or no float, this may mean that we 
have scheduled all the noncritical activities early in the project, leaving all the really 
important things for the end. Move more important activities to earlier in the project, 
or build in some padding toward the end to minimize risk. 

• Activities which are too long. No activity, with the assigned resources, should exceed 
the Manageable Unit of Work (MUW) discussed previously in the book. If a month­
long activity overruns by 100 percent, we are a month late. If a one week activity 
overruns by 100 percent, we are a week late. Try to break longer activities down into 
meaningful, manageable chunks, preferably with a well-defined deliverable. 

Tracking Progress 
The Gantt chart can also be usefully employed to track progress graphically by introducing 
an "actual" bar for each task, shading the bars, or color-coding the bars (see figure 9.17). 
Progress can also be shown on network charts by coding events which have been achieved in 
some way, or by recording actual completion information on the nodes when using a 
precedence-type chart. 

166 Managing Information Technology Projects 



Write Essay 

Select Topic 
Locate Literature 

Draft Outline 
Write Draft 
Revise Draft 

Produce Final Copy 

Do layout 
Spell Check 
Proofread 
Collate & Bind 

Project Complete 

Planned 

Gantt Chart with Actuals 

.. Actual 

Figure 9.17 

A variation on the network chart, known as a slip chart (figure 9.18), allows us to depict 
slippage visually. On this chart, the time originally scheduled for each event is shown, and 
then as time passes, the updated estimates, and finally the actual completion date. It is easy 
to pick out the deviation from plan visually. In the figure, events 1, 2 and 3 have been 
achieved. Events 4 and 5 are running behind schedule, but have not slipped further since the 
last estimate. The diagonal line indicates that for completed tasks, scheduled time equals 
actual time. 

Summary 
To summarize, Gantt charts are most useful when we wish to depict information in a simple 
visual manner for presentation or summary purposes. They do lack the more detailed 
information about task dependencies which is easily portrayed on network-type charts. 
These are thus more suited to detailed planning of dependencies and critical paths. Some 
notations do allow us to show the critical path activities on a Gantt once they have been 
determined. Milestone charts are useful as a high-level summary and for communication 
with steering bodies. Resources are easily shown with activities on Gantt charts, but are 
difficult to show in task-on-line network notations. They can be included in task-in-node 
network notations. Gozinto charts can be useful to show the activities and the necessary 
inputs or resources required to fulfill the activities. 

No matter which notation we use, we should realize that this is merely a portrayal of the 
same collection of data related to tasks, milestones, and resources. It is thus perfectly 
possible to initially use one technique, and then to portray the same data in another form. If 

Chapter 9 Planning Techniques 167 



J 

F 

M 

A 

M 

J 

J 

A 

Slip Chart 

Estimated Completion 

Figure 9.18 

you have used these techniques manually, you will have realized that doing them on a large 
scale can involve a significant amount of work, and quite a lot of calculation. This work 
needs to be repeated whenever actual figures or new estimates change the position. The 
effort involved causes many project managers to give up on using them. We do this at our 
peril, however, since we can then easily lose track of critical issues in our project. A much 
better solution is to automate a lot of the drudgery by using a software package to do it for 
us. This is discussed in the next chapter, together with some more S'ophisticated planning 
options which are really only practical with automated support. 

168 Managing Information Technology Projects 



Case Questions 

MyWay Organizer 
Q9.1 
A colleague has produced the following calendar-time estimates for activities within the 
design phase of the organizer project: 

ID Description Duration Dependent on 

a Prototype user interface 10 days 
b Design physical file structures 2 days a 
c Map functionality to module structure 3 days a, b 
d Define interfaces 2 days c 
e Define global in-memory structures 2 days c 
f Define and test compression algorithm 5 days c 
g Design common modules 5 days e, f, d 
h Design normal modules 8 days g 

Predict performance 3 days g,h 
j Define standards for coding 5 days 
k Devise test plan 5 days e 
I Prepare test cases/data 5 days k 
m Review phase deliverables 2 days all 

Prepare a Gantt chart for the design phase, respecting the dependencies and using the 
calendar-time estimates. Try to complete the phase in the minimum time. (15 mins) 

Q9.2 
Using the data from Q9.1, prepare a PERT style (task on line) chart of the phase showing 
dependencies graphically. Show calculated durations only - do not worry about ranges or 
most likely times. (15 mins) 

Q9.3 
Using the data from Q9J, prepare a precedence chart of the phase showing dependencies 
graphically. (15 mins) 

Q9.4 
Using the answer for Q9.2, or Q9.3, determine the critical path for the phase. Which 
activities does it include? What is the minimum time taken to complete the phase? What 
effect will it have if task c takes 5 days? What effect would there be on the project duration 
if task k takes 8 days? What effect if task e takes 7 days? (15 mins) 

Chapter 9 Planning Techniques 169 



Q9.5 
Use the data from Q9.1. Assume that the durations are for working days. We have decided to 
plan work for 5 days per week. This will give us a contingency, since the team actually work 
5.5 days per week. Plan the phase using a Gantt chart, respecting task dependencies and the 
above criteria. What is the minimum time for completion? (20 mins) 

Gleam Stores 
Q9.6 
The Gleam roll-out planning is well under way. The macro-plan estimates (in calendar 
months) and resource allocations look like this: 

ID Task Duration Responsible Resources 

a Document & Trng Pkg 5 Anthony Peter, June, Ray 
b Local Region Stores 4 Michela Peter, Ray, Mark, Mary 

Jacob, Milly 
c Northern Region Stores 6 Peter Ray, Mark, Jacob, Fred 
d Southern Region Stores 5 Mary Milly, Vincent, Hilary, 

Martin 
e Western Region Stores 12 Peter Ray, Mark, Milly, 

Vincent, Hilary 
f New Eastern Stores 5 Martin Jacob, Fred 

Add a contingency of 1 month to all estimates. Create a Gantt Chart with milestones to show 
the completion of implementation in each region. Include resource assignments on the Gantt. 
Assume the project starts in June of this year. Arrange sub-projects to achieve the shortest 
overall implementation time. Ensure that there are no conflicts in terms of resource assign­
ments. Work out the approximate cost if a person-month costs $6 000. (40 mins) 

Q9.7 
Using the data from Q9.6, prepare a macro-plan of the whole implementation effort in the 
form of a network chart (task on line). Show the various region implementations as sub­
projects. Expand one of the sub-projects into its own chart, linking the nodes to the main 
project. In the sub-project, show about ten tasks with their dependencies. (30 mins) 

Q9.8 
Using the data from Q9.6, prepare a macro-plan of the whole implementation effort in the 
form of a precedence chart (task in node), Show the various region implementations as sub­
projects. Expand one of the sub-projects into its own chart, linking to the main project. In 
the sub-project, show about ten tasks with their dependencies. (30 mins) 

170 Managing Information Technology Projects 



Handover Trust 

09.9 
Using your knowledge of the system development process, plan the New Business project 
for Handover Trust as follows: Assume that the Feasibility Phase is complete. Show this as a 
single activity. Plan the Requirements Definition Phase in detail (about 20 to 30 tasks). 
Show a summary task for each subsequent phase. You may use previously derived estimates 
(chapter 7) or reasonable assumptions for durations. Show all dependencies. Present your 
answer as a summary Gantt chart for management, and a detailed precedence chart for the 
Requirements Phase. Determine the critical path through the Phase, as well as the project. 
(45 mins) 

Q9.10 
Given the following data (obtained by Delphi estimates) for the Quotations Project, calculate 
the earliest time, the latest time and the most likely time for completion of the project using 
PERT techniques: 

ID Description Minimum Most Likely Maximum 

a Feasibility 4 4 4 (compl) 
b Requirements 10 12 20 
c External Design 14 20 26 
d Technical Design 8 10 14 
e Build 24 36 48 
f Integration Test 6 12 20 
g User Documentation 10 12 12 
h Installation 4 6 8 

All times are in calendar weeks. The project start date is the beginning of August this year. 

Task dependencies are as follows: 

b on a 
con b 
don c 
eon d 
fon e 
g on d 
h on f and g 

(45 mins) 

Chapter 9 Planning Techniques 171 



ThoughtWell Books 
09.11 
Using your previous work on the ThoughtWell Books project from Q8.6 (team structure) 
and the list of tasks provided below, do the following: 

• Add any necessary QA or Management tasks you think necessary 

• Change any tasks, descriptions or dependencies you think necessary 

• Develop a network diagram showing the dependencies 

• Allocate resources to tasks in an optimal fashion 

Prepare a plan for each team member showing which tasks they will perform and the likely 
timing of these. You can assume the project starts September 1. 

ID Task Estimated Effort Dependent upon 

a Object Relationship Model 4 person weeks 
b Business Process Model 2 person weeks 
c High Level Event Models 6 person weeks a, b 
d Prototype User Interface -

Generic 1 person week a,b 
e Prototype Event Dialogues 4 person weeks a, b, d 
f Persistent Data Design 1 person week a, e 
g Design Help System 2 person weeks d 
h System Architecture 1 person week e,k 

Design Reusable Compo-
nents 2 person weeks e 

j Design Unique Components 4 person weeks e 
k Communications Prototype 4 person weeks c 
I Populate Help System 4 person weeks g 
m Code Reusable Modules 4 person weeks 
n Code Unique Components 6 person weeks 
0 Write User Manual 4 person weeks i, j 
P Unit Test Reusables 2 person weeks 
q Unit Test Uniques 2 person weeks j 
r Integration Test 3 person weeks p,q 
s System Test 2 person weeks r 
t Client Operations 2 person weeks r 

Training 

(If unfamiliar with tasks a and c, treat these like "entity model" and "high-level logical data 
flows".) 

(1 hour) 

172 Managing Information Technology Projects 



1 O Project Management 
Tools 

Facilities 
Modem project management tools are very affordable and user friendly. Time was when 
packages were available only on mainframes, took hours to run, cost tens of thousands of 
U.S. dollars, and produced output that looked like a hexadecimal dump. All that has 
changed. Very good packages are available for around $500, run on high-end personal 
computers and produce stunning output. Really high-end packages supporting huge projects 
with thousands of activities, scores of sub-projects and hundreds of resources still require a 
minicomputer and a well-padded wallet, but these are seldom needed in LT. projects. 
Typically we need a good PC package such as Timeline"''', SuperProject"''' or Microsoft 
Project"'.... All of these will run under Microsoft Windows"'''on an Intel"'''386 processor 
machine. For large projects (>250 activities and > 10 people), an Intel"'''486 level machine or 
better is recommended. There are also good packages available on the Macintosh" ... and 
Unix. 

Typical facilities include the following: 

Support for the creation and maintenance of calendars 

Capture and maintenance of information related to activities 

Capture and maintenance of dependencies between activities 

Capture and maintenance of resource categories and individual resources 

Assigning resources to activities 

• Structuring activities into hierarchies (Work Breakdown Structures) 

• Viewing activities as Gantt charts, or network charts 

Scheduling of activities, including checking resource availability, and calculation of 
expected dates 

Recording actual delivery dates 

Chapter 10 Project Management Tools 173 



Resource costing and calculation of actual expenditure based upon resources 
assigned and actual durations 

Comprehensive reporting, including production of graphic Gantt and network charts 

In addition, the more sophisticated packages offer facilities like: 

User customization of display screens, reports, and menu structures 

• Resource leveling (discussed below) 

• Partial assignment of resources 

Support for sub-projects, and consolidation of these into super-projects 

Open interfaces via standard file structures to other products such as Lotus 1-2-3T~ 
and DBase""" 

Realtime interfaces to other Windows"'''' products via Dynamic Data Exchange 
(DOE) or Object Linking and Embedding (OLE) 

Repository 
All the good packages have an underlying repository (see figure 10.1), or database, 
containing all the project information. This makes it possible to capture data on a new 
project using a Gantt or Work Breakdown outline, then view it as a network when desired or 
vice versa. This flexibility is a major advantage over manual methods. In general, any 
information should only need to be captured once. For example, when I define a resource, I 
may do this on a special resource-editing screen, or I may decide I need a new one while 
working on the project task outline. Once the resource is defined, I can add it to other tasks 
by simply using its assigned name, or even by selecting it from a scrolling window with a 
mouse click. The repository should contain the following information: 

Calendar information which specifies work and holidays, and the hours worked on 
various days (weekdays versus Saturdays) 

Resource information which will detail the name, type, quantity and cost of each 
resource. In LT. projects, our major resources are usually people, and since they are 
so individual, we normally identify them by name as discrete resource types. One 
exception to this could be where we are using a pool of contract programmers, when 
we might specify programmer as a resource category, and the number available to us. 
Even there, we will normally want to refine this once actual resources are assigned, 
to take into account individual skills and characteristics. 

Task information, which would include: Name of the task, description of the task, 
estimated duration, planned start date, calculated end date, dependencies on 
preceding tasks, assigned resources, costs unrelated to resources, actual start date, 
actual end date and various other information such as float time, earliest start, latest 
start, calculated costs, whether the task is critical path or not, and so on. 

Structural information such as the collation of tasks in a Work Breakdown Structure. 
Frequently we can also access tasks by various other means, such as an assigned 
category (e.g., Technical, Management, Quality Assurance). 

174 Managing Information Technology Projects 



WBS PERT MGMT Reports 

.[-.. ' ::-:: .:r 

L-·, ~"""~ 
J 

i \ / , 
GANTT 

Resource Histories 

Project Management Tool Figure 10.1 

Calendars 
Two types of ca1endars are useful. The first is a project ca1endar. This will record which 
days of the week are normally worked, and the usua1 hours on those days. It will also record 
which days are nonworking days for the team (e.g., public holidays). This information 
a110ws nonworking time to be skipped automatica1ly when scheduling tasks and working out 
durations. Having the duration of the working days a1Jows automatic sca1ing of durations 
based upon effort estimations. 

The second type of ca1endar is a resource calendar. This a110ws customization for a par­
ticular resource type or individua1 resource. An example would be a person who works ha1f 
days. We could define a calendar for this person, which stipulates four hours of work time 
per day. The package will then use this information in scheduling and calculating duration of 
tasks assigned to this person. 

We will norma11y define the project ca1endars as the first step in setting up a project plan on 
an automated tool. We will now discuss the following steps in the order they would 
normally be performed. 

Chapter 10 Project Management Tools 175 



Task Definition 
Having defined the calendar(s), the next step is defining the tasks in the project. These will 
normally have been determined using a WBS, drawing on the methodology for the type of 
project that you are tackling, and using the generic project lifecycle discussed earlier. At the 
outset, it is normally sufficient to capture the task-id (this may be automatically generated), a 
task description, and the estimated effort or duration for the task. It is normally more flexible 
to define the effort and allow the software to calculate the duration, than the other way 
round. 

Tasks which may not occur to you at first, but which are very useful to have in your plan 
include: 

• Training - which can be used to assign people undergoing training and have this time 
costed to the project 

• Leave - which allows you to see who will be on leave when. Company policy will 
decide whether the project bears the employees' costs during this time or not 

• A management task, which stretches for the duration of the whole project, against 
which we can allocate the project manager's time and administration overheads. 

• Review points at the termination of each phase, and a task at the beginning of each 
new phase to respond to the findings of the review 

A suitable structure is shown in figure 10.2. 

Dependencies 
These are normally captured after the tasks have been captured. Many packages allow us to 
do this in a simple fashion by clicking with the mouse on the precedent task and the 
dependent task. This can be done in an outline (Gantt style) view, or on a network 
representation as in figure 10.2. Dependencies should be indicated by your methodology. 
Where you have to determine these yourself, the best way is usually to examine the 
deliverables associated with tasks, as discussed previously under the Product Breakdown 
concept. Think about which tasks produce which deliverables, and which are required as 
input to other tasks. If this is not apparent on the surface, then examine the data content of 
the deliverables. A.n example would be that to prototype effectively, we need a data 
dictionary in place, as well as a functional model of what is required. Figure 10.3 shows this 
relationship as a flow diagram, from which it is easy to derive task dependencies. 

Care should be taken to avoid definition of circular dependencies. This occurs when a task is 
dependent upon another, which in turn is directly or indirectly dependent upon the first task. 
These are all too easy to create in a complex project plan. If they occur, most modern 
packages will warn you and ask you to resolve them before network analysis can 
commence. 

176 Managing Information Technology Projects 



C') 
::T 
III 

"'0 
«> ..... .... 
0 

"U .., 
..l2. 
("j) 
0 -s:: 
III 
:::J 
III 

CO 
("j) 

3 
("j) 

a 
-I 
0 
0 en 

.... 
:::j 

z 
("j) 

~ 
* c 
iii' 
ce 
;; 
3 
m 
)( 

I» 
3 
" (jj 

~ c: ;a 
.... 
9 
t\:) 

Plan 
Project 

f-
Produce ~ ~aype Functional 
Model 

Screens 

.'. 

Produce Ched\ 
Prototype 

Data System 
Model '. Consistency 

Reports 
, 

L-1 Prototype 
Tutorial 

,..4 
Conlig & 

Perf. t-~ 

.', Constraints 

Manage 
Team ~-~ 

Daily 

Uase wilh 
DevelopmGot ~-~~ 

Management ge 

Design 
~ Rle 

Studures 

Review •• Design 
wilh >-

Design Write 
~ 

Unit 

MgmI/Mkting 
h Programs Wallthru I--~' Modules Test f- Integration I-. Tesl , 

, 
. .... , .= .= ,.~.~ H Pre-release 

." Review 

Develop 
i User 

Cross 
Platform f-

, Document Test 

...•. 



i; Data 
, Analysis I-----" 
L 

Function 
Modeling f----; 

Determining Dependencies 

Work Breakdown 

Data l 
Dictionary I ~ 

Function 
Model 

Proto- Screens 

typing and 
Reports 

'U'C, '""", 

Figure 10.3 

It is extremely useful to group our detail tasks under summary tasks within a WBS. This 
allows us to collate estimates and actuals upward in the hierarchy automatically. It also 
allows us to collapse past and future phases to a summary representation, while we 
concentrate on the detail tasks of the current phase. Recall the creeping window concept 
from chapter 7. Having a good WBS on which to record actuals also simplifies gauging 
project progress and reporting. This will be explored in a later chapter. 

Resource Definition 
Having defined the tasks and dependencies, the next step is usually to define resources. In 
LT. projects our major resource is usually people. Other resources such as machine time, 
outside services, and capital can be included if desired. Resources can be captured first, and 
then allocated to tasks, or they can be identified while we work through the tasks, and then 
we can provide full details for each resource later. Typical information held for each 
resource would include a unique id, description or name, cost per unit time, and availability. 
Availability could be expressed as the number of a type of resource (e.g., we have 3 
programmers), or it can be taken to the level of an individual (e.g., Susanne is available 5 
hours per day, from March till June). 

Once resources are set up, they must be associated with tasks in the project. This requires 
careful thought to ensure that the appropriate skills and experience are applied to each task. 
In some cases junior staff may be aSSigned to a task so that they can learn necessary skills. 
This will represent an investment cost, since they may not actually contribute to producing 
the deliverables more quickly. If you find that you must allocate too many resources to a 
task to get it done in an acceptable time, this could be a warning that the task has not been 
decomposed successfully. You should re-examine your WBS to see if it can be broken down 
into independent activities which can be performed by very small teams. 

178 Managing Information Technology Projects 



Gantt 

A ;.mm~_---, 
B 

C 

o 

2 

1 

Resource Histogram 

Before 

Resource Leveling 

Resource Loading 

2 

1 

Gantt 

~ 
Tasks Shifted to 

Resource Histogram 

After 

Figure 10.4 

When resources are allocated to activities which occur in parallel, the load on the resource 
will be cumulative. If a person is allocated fully to two tasks occurring at the same time, the 
person will be overloaded - we are asking them to work 16 hours a day! This can be resolved 
in two ways: First, by scheduling the tasks so that, even though there is no technical depen­
dency, the one will occur after the other to resolve the resource overload; or second, by al­
locating the resource only partially to each of the parallel activities. For example, we could 
have an analyst who is splitting her time equally between writing user documentation, and 
integration testing of modules. Different packages allow different options, so you should 
decide which opti ons you need and try to find these in the short listed packages before 
choosing a tool. 

Many packages provide resource histograms which make overloads easy to detect. An 
example is shown in figure lOA. 

Some packages offer automatic resource leveling. This will shift tasks, which compete for 
resources, so that some start later, preventing resources overloading. If this were applied to 
the situation shown on the left of the diagram, we would get the result shown on the right. 

Chapter 10 Project Management Tools 179 



Notice that no resources are now overloaded, and that activities have been shifted to resolve 
the problem. This feature allows scheduling optimally, taking into account both dependen­
cies and resource constraints. Basically, we set up our project plan with only the necessary 
technical dependencies, allowing maximum parallelism. This will give us the shortest poss­
ible project plan, given unlimited resources. Next we add the resources available and apply 
auto-scheduling as well as smoothing. This will then give us the shortest duration possible, 
respecting dependencies and resource limitations. This does a very complex job (considering 
the calendars, dependencies and different resource availabilities as well as task effort es­
timates) for the project manager in a painless manner. 

Scheduling 
As we proceed through the project, we want to ensure that the current or imminent phase is 
planned and scheduled in detail. As we complete each task, the actual date and effort should 
be recorded into the system. This allows us to track progress against plan effectively. We 
should avoid overloading resources as far as possible. It may be necessary for certain short 
periods of time, but should never be routine. People under pressure do not work more 
productively. 

Different packages provide a variety of scheduling options. These include: 

Minimum time with no resource constraints. This will allow maximum parallelism, 
with no consideration for risk or availability of resources. Not frequently practical. 

• Minimum time within resource constraints. We have discussed this previously under 
resource smoothing. 

• Least cost for completion by a given date. Here we specify an end date that we want 
to meet, which is later than the finish date for the preceding option, and let the 
software work out the optimum resources to apply (minimum to get the job done in 
time), thus minimizing cost. 

Least cost. This will allow the end date to be totally flexible. and optimize solely to 
minimize cost. This tends to give very long project durations. and is seldom practical 
for LT. projects. 

What If? 
Part of the power of automated project management tools lies in their ability to work through 
scenarios rapidly. They are useful if we want to capture a project plan and calculate an end 
date. As our estimates change during the project, recalculation is needed. To examine a 
variety of different ways of handling the project and compare the outcomes, to assist us in 
project design and make crucial decisions of a structural nature during the project, such tools 
are vital. They allow us to play what if? and see what the implications of various choices are 
in a short period of time - something that would never be possible manually. 

180 Managing Information Technology Projects 



Reporting 
As indicated in the summary of chapter 9, various types of representation are useful for 
different purposes. The beauty of automated tools is that they let us capture the information 
in one format, work with it in another, and then print it out in a third suitable for review with 
management. This flexibility allows us to tailor the output for the audience, thus enhancing 
overall communication. 

Some packages also allow the tailoring of the specific information on the reports and graphs 
to match the user's requirements exactly. We can, for instance, choose which of the fields 
related to tasks we want to see on the report, and in which order, as well as how we might 
like the report sorted. 

Standards within the Organization 
As with CASE tools and programming environments, it is important to have a corporate 
standard for project management tools. This is necessary to build a productive level of skill, 
to allow interchange of project information in a consistent form, and to encourage re-use. 
The latter is particularly important. The idea is that a project plan from a previous similar 
project in the organization is a very rich source of pertinent information for a new project in 
the same organization. It will already contain the required tasks (technical, management and 
quality assurance) as well as amendments which the previous team found it necessary to 
make along the way. It is normally only necessary to alter the start date, estimates and 
resources to arrive at a comprehensive new plan. This can save an enormous amount of 
effort, as well as enhancing the overall quality of the plans. 

Some organizations with which we have worked, have built standard skeleton plans tailored 
to their particular methodologies, types of projects, and organizational circumstances. These 
are made available to project teams from the Development Support area. Once they have 
been modified by the team for a new project, a copy is filed with the Development Support 
group. They consolidate these into super-project plans. Since all underlying project plans use 
similar concepts and terminOlogy, they are able to identify, on company wide basis, what 
the demand for scarce resources will be at a particular point in time. This allows them to 
avoid resource overloading of central service areas like Data Base Administration, or Net­
work Support. Teams will be warned of clashes for these resources, allowing them to work 
around and thus ensure that external resources they need are there when they need them. 

If actuals are fed back to a central area in a similar manner, LT. management can track 
overall performance against deliverables and cost budgets very effectively with little 
overhead on the part of individual project managers. 

Costs and Overheads 
People costs are usually the major component of LT. project costs. Costs are reflected in the 
tool by associating a cost per unit time against the resource. A task cost will then be 
calculated by multiplying the task duration by the unit cost for each resource, and summing 
these. Other costs, such as purchase of a component, will have to be reflected in different 
ways. In some packages these can be captured directly as nonresource costs linked to a 
particular activity or milestone. Others do not allow costs which are not linked to resources, 
forcing you to add dummy resources, or maintain these types of costs outside the package. 

Chapter 10 Project Management Tools 181 



Product Definition 
As yet, few project management packages support defining a product breakdown, or relating 
a configuration to the tasks in the project plan. There are separate configuration management 
packages available which do this, but integration is still lacking. We would like to see 
project management tool vendors incorporate facilities to easily include product definitions 
linked to tasks in the project plan. 

Version Control 
High-end packages provide facilities to keep several versions of the project plan concurrent­
lyon the system. This is particularly useful to support the configuration management con­
cept. We can keep a copy of the project plan at each review point, which includes actuals to 
that review, before we modify estimates and expand tasks for the next phase. This allows us 
to accurately recall how the estimates, plan and actuals have shifted over the life of the 
project. Measures like the Estimating Quality Factor discussed in chapter 7 rely upon this 
sort of information. 

Selecting a Package 
In many cases you will not have this lUXury (or onerous task!) as the organization will 
already have a standard package in use. Should you be required to select a tool, some of the 
criteria which you may consider are listed below: 

Feature considered as essential 

• 

• 

• 

• 

• 

• 

• 

• 

182 

Support for WBS, dependencies and Gantt Charts 

Reliability 

Friendly, intuitive graphical user interface (e.g., Microsoft Windows"'~, MacintoshTM 
or MotW"" Presentation Manager'rM). This should be taken advantage of and used to 
good effect by the package. It should not merely be a "Windows" version of an 
earlier text-oriented package. We should be able to visually insert dependencies, drag 
time dependent tasks around, etc, 

Support for capture of resources and allocation to tasks 

Good reporting and printing facilities (check formats, speed, limitations, etc.) 

Repository, single source of entry, i.e" if we enter information in one format (e.g. 
Gantt view) it should be stored semantically and available for use in other formats 
(e.g., PERT or WBS) 

Support for calendars which allow handling working and nonworking days, holidays, 
etc. 

Support for capturing of actual effort and durations and comparison with planned 
figures 

Ability to play "what in." scenarios without disturbing the base plan 

Managing Information Technology Projects 



• Support for the concept of milestones 

Critical Path Analysis and identification of slack time 

Desirable features 

• Network (LAN) and multi-user support 

Support for sub- and super-projects and consolidation 

• Full PERT support including calculation of early, likely, late dates and probabilities 

Ability to handle effort-driven and duration-driven scheduling. Effort-driven is 
where we specify the effort required and the resources allocated and the package will 
scale the duration accordingly. Duration-driven is where we specify the duration and 
this time will be assumed to be used for each resource assigned to the task. 

• Resource smoothing and leveling 

Resource histograms and calculation of costs versus time 

• Performance to handle large numbers of activities (>300) and human resources (>10) 

Support for fixed-date activities which may not be adjusted by automatic scheduling, 
e.g., a board meeting 

Plotter support 

• Online, hypertext style help facilities 

• Online, progressive tutorials 

Allowing user to customize screen views and reports in terms of position, scaling, 
content, sequence and filtering 

• Ability to collapse and expand tasks easily based upon WBS collation 

• Openness, that is, easy file exchange or real-time exchange of data between the 
package and other applications, including spreadsheets (e.g., Lotusl-2-3™, Excer'"'); 
graphical presentation packages (e.g., Harvard Graphics™, Corel Drawn .. , 
PowerPoint™); and databases (e.g., Microsoft Access™, ParadoxT 

.... dBase™) 

• Ability to bring in standard plans from a library 

Individual resource calendars which can be used to handle training time, leave and 
differences in work-time availability 

Handling of nonresource related costs. such as rental of equipment, etc. 

• Calculation (and perhaps graphing) of value of work complete versus budget 

• Derivation of productivity statistics 

Support for versions and baselines 

Chapter 10 Project Management Tools 183 



• Multiple views (e.g., Gantt and Resources) simultaneously visible on screen 

Ability to drive package in batch mode for data entry and/or capabilities to drive 
package in real-time from other applications, e.g., as an OLE server 

Future of PM Packages 
In the future we are likely to see much greater integration of project management software 
with other types of packages and facilities. Things we may see: . 

• Integration with e-mail, so that resources are alerted to impending tasks, or to serious 
deviation of actuals from planned delivery dates by automatic generation of e-mail 
messages 

Tie in to groupware which will allow various collaborators to work on aspects of the 
plan in parallel simultaneously, and to be aware of the other participants' actions, if 
these affect them . 

• Integration with group calendaring software to allow for automated scheduling of 
meetings and activities when necessary participants are available, but still respecting 
planned dependencies 

• Ability to analyze the history base of completed projects to determine estimating 
performance, calculate and plot productivity trends and other usefuJ data 

• Support for Product Structure Models linked to Work Breakdown Models within the 
packages 

• Tied to the above, the ability to define and manage a configuration. Control of 
versions and changes (see chapter 14) 

• Links to methodology management tools and to CASE products. This may also 
include automatic recording of actuals as deliverables, in electronic form, are 
completed and verified in other tools 

184 Managing Information Technology Projects 



Case Questions 

The questions for this Chapter assume you have a representative software package such as 
Timeline"''', SuperProject"''' or MsProjectTM available to you. Before attempting these 
questions, you should work through the tutorial provided with the package. 

MyWay Organizer 
Q10.1 
Capture into your package the activities defined in Q9.1. Specify durations as given and add 
dependencies to your plan. Print a Gantt chart of your plan. Compare the overall plan and 
timing with the one you generated manually for that question. (20 mins) 

Q10.2 
Print a PERT or Precedence chart of your plan. Locate the critical path and determine its 
length. Adjust the time for activity c to five days and observe the change in the end date. 
Change activity k to 8 days. What is the effect? Change activity e to 7 days. What is the 
effect? (20 mins) 

Q10.3 
Using the calendar facilities (if available) or dummy activities (if no calendar available), 
plan for a work week of Monday to Friday, with 8 hours available per day. Record two 
public (or bank) holidays. What effect does this have on the plan captured in QlO.2? 
(20 mins) 

Q10.4 
Add resources to the plan as follows: 

Name 

Yourself 
Mary Lloyd 
John Fowler 
Bill Goates 

Roles Activities where involved 
(* indicates responsibility for task) 

PM You chose 
Sen Analyst a*, c* ,d* ,k*, I, m 
Analyst/Programmer b*, c, e*, f, g*, h*,j*, 1*, m 
Technical f*, i *, m 
Specialist 

Ask the package to recalculate the schedule. Do you get any warnings? Has the end date 
changed? If the package allows, add costs to the resources ($275 per day) and cost the 
design phase. (30 mins) 

Chapter 10 Project Management Tools 185 



Gleam Stores 
Q10.5 
Using the data provided in Q9.6, construct the macro-plan for the Gleam implementation 
projects. Do not capture any details for the sub-projects. Using the file provided by the 
instructor, import or link the sub-project for the Western Region. Calculate the duration and 
end time for the overall implementation process with this data included. You may find that 
some resources are overloaded. Resolve this manually and/or automatically, depending upon 
the facilities your package offers. No resource should be scheduled to work on more than 
one macro-ac~ivjty in parallel (they are in different geographic locations!) (30 mins) 

Q10.6 
Using the plan captured in QlO.5, and the list of tasks from the imported sub-project, expand 
one of the other implementation tasks. Choose your own durations. Recalculate the overall 
project. (30 mins) 

Handover Trust 
Q10.7 
Using your (or a provided sample) answer for Q9.9, capture the tasks and activities for the 
New Business Project. The Requirements Definition phase should be captured in detail. 
Capture all activities in the form of a Work Breakdown Structure. Define necessary depen­
dencies between phases, and within the Requirements phase. Assuming the Requirements 
Phase took 7 months and 42 manmonths of effort, capture this actual completion information 
into the plan. Now collapse the Requirements Phase for further reporting purposes. Expand 
the External Design Phase into detailed activities (about 20). Revise the estimate for this 
phase based upon the variance in the Requirements Phase. (1 hour) 

Q10.8 (Requires PERT facilities in package) 
Using the data from Q9.l0, capture the activities, including minimum, most likely and 
maximum times. Determine the critical path. Determine the earliest, most likely and latest 
completion dates. (45 mins) 

186 Managing Information Technology Projects 



ThoughtWell Books 

Q10.9 
Using the data from Q9.11 (provided by instructor) capture resources and allocate your team 
members as selected in Q8.6. Print an overall summary Gantt for presentation to manage­
ment. Next produce individual resource calendars/schedules for each team member. 
(40 mins) 

Chapter 10 Project Management Tools 187 





11 
Micro-scheduling 

Project 
Execution 

During project execution, the planning does not stop. There are always more details to be 
worked out and adjustments to be made. These occur at each project revision point and as 
we move through the tasks in the phases as highlighted in figure 11.1. It is particularly 
crucial for the project manager to allocate work optimally to tearn members and outside 
resources. This should be done with respect to skills, as well as availability of resources, 
workloads, and not ignoring the need for training and development. Matching the skills to 
the job is vital to ensure high motivation and productivity. We have seen in the chapter on 

Project L1fecycle 

Collect 
Results 

Check 
Quality 

Assess 
Progress 

/Per Phase 

Figure 11.1 

Chapter 11 Project Execution 189 



estimating the vast effect that individual skills can have on the effort required for a particular 
task. The level of detail required on a daily basis should probably not be committed to the 
formal project plan - it simply becomes too much effort and would divert attention from the 
real issues at hand. It is usually sufficient to adjust the plan weekly if necessary or at longer 
intervals. 

The project manager should not be hidebound by the plan because he is related to it by 
sweat, but should monitor the actual performance of activities closely, so that any necessary 
adjustments can be made. We may in our planning have made some incorrect assumptions. 
Say we assumed that a particular programmer was proficient with a certain utility when in 
fact he was not. These things will crop up frequently. It is not imperative that the initial plan 
should be perfect, but it is vital that we adjust as necessary while the activities occur. If we 
find that things are going well for one person while another is struggling, we should not 
hesitate to ask the person who is ahead of schedule to help the other out. This builds team 
spirit and boosts morale, as well as providing learning opportunities for weaker project 
members. 

Estimates at the summary and macro-levels may have been made with generic factors and 
average resource productivity in mind. These will need to be adjusted when you have an 
actual person assigned to a task. Another important psychological issue is commitment of 
people to the scheduled times. At the summary level, estimates are frequently made without 
the concurrence of the people who will eventually perform the work - often we do not know 
yet who this will be. Before tasks are actually assigned and begun, we need to re-visit these 
estimates and discuss them with the people assigned. This process can provide valuable 
adjustments to make the estimates more realistic, as well as increasing the team members' 
commitment to them. People are far more committed if they have had a say in the scheduling 
and have agreed to complete the work by a certain date. 

Obtaining Resources 
Care should be taken to confirm availability of outside resources well ahead of time. 
Providers may have promised them to you six months ago, but are they still available and 
have they remembered? They may have had staff changes and be able only to offer someone 
with lower skills. This will have an impact on the duration of tasks and requires adjustment 
of your plans. 

If you find that the team assigned is not coping, and the work must still be completed by a 
given date, you may have to negotiate for more resources with management. Be very careful, 
however, of adding resources to a project in midflight. To quote Fred Brooks, "adding 
resources to a late software project only makes it later." New resources can be very disrup­
tive to the team and can divert the attention of team members, who have just invested a huge 
amount of effort in getting themselves through a learning curve, from the task at hand. Bear 
in mind the extra communication overhead which you will incur, thus decreasing productiv­
ity for everyone and increasing costs. Generally, if a project is in trouble and needs more 
resources, the best thing to do is to bring in a single very highly skilled person - a consultant 
to address the specific problem. The brief given to the consultant should be to work with the 
existing team members, assisting them to solve the problems and transfer to them the neces­
sary skill so that they become self sufficient when faced with a similar problem in the future. 

It is also vital to keep management, the steering bodies and the user and sponsor areas fully 
on board as the project proceeds. It is all too easy for them to forget and focus on other 

190 Managing Information Technology Projects 



things once the initial enthusiasm and fanfare of a new project has died down. If you are not 
visible to them and constantly informing them of progress, a request out of the blue for addi­
tional resources, time or funding will not go down at all well. 

Monitoring Parallel Projects 
During project definition, we identified parallel projects upon which we might depend for 
implementation. For example, we may need a menu system created by another team in order 
to run our system. We need to keep abreast of the progress and developments in these 
projects to ensure that the expected deliverables are in place when we need them. One 
company completed a very expensive sales analysis system on time and within budget, only 
to find that it was useless because the functionality to capture the input data in the point of 
sale system was delayed by some 12 months. 

In a similar vein, we need to inform any other projects which depend upon our deliverables 
of any changes in our schedule which will affect them. 

Executing Tasks 
While we should keep a close eye on progress, we should not be acting as a policeman and 
breathing down the necks of our staff. Tasks should be allocated to individuals to complete. 
They should understand that they assume responsibility for their completion and the quality 
of the deli verables. They should also know that the project manager is available to help them 
resolve any issue outside their control which could impede the work or negatively impact 
quality. Managers with a technical background should avoid getting stuck in and doing the 
job. Sometimes you have to take a back seat and let the team members work through it 
themselves. It is a little like being a parent, even though you know the child may fall, you 
have to let him climb the tree, otherwise he will never develop the skills to do it unassisted. 
Of course, you should provide instruction, guidance and advice and support when requested. 
Successful managers are those who achieve results through their people. 

Staff should be encouraged to develop a results-oriented work pattern. This is achieved by 
measuring results, not busywork. There is a management principle that says you get what 
you measure. If you measure people's performance by the cut of their tie and whether or not 
they are at work at one minute past eight, you will get employees who are at work on time 
and wear the kind of tie you like. This may not make them productive though. If we want 
productivity, we should measure it This is a fairly involved task for systems work, and we 
will tackle it in some depth in the chapter dealing with measurement. The principle is clear: 
We encourage people to produce good results by defining what good performance is, 
providing examples, supplying a supportive environment, and being demanding. We should 
be flexible on things which allow individuality and do not negatively impact performance. If 
your star designer likes to work barefooted, and he is not working with clients who find this 
a problem, so be it. 

Checking Quality 
Quality can never be checked into anything - it must be built in. That said, it is vital to 
ensure that we do check quality to ensure that anything which is substandard is caught as 
early as possible, and corrected before it is visible outside the project. This involves various 
activities, such as walkthroughs by peers, inspections and quality reviews. These will be 

Chapter 11 Project Execution 191 



explored in detail in the chapter on Quality Management. For now, let us accept that each 
and every deliverable produced by the team should be quality assured before it is accepted 
and credited for progress, and before it is passed on as input to a subsequent task. We cannot 
build a quality house from inferior bricks and timbers. 

Assessing Progress 
As we progress, we need to collect actual work results (deliverables) as well as actual 
completion dates and actual effort expended. The latter should be captured into our project 
management tool. This will allow us to accurately establish how much of the work is 
complete, as well as how accurate our initial estimates were. If we have spent twice as much 
effort on requirements definition as we expected, chances are that design will also take about 
twice as long as we initially planned. Progress assessment is vital to catch any deviations 
from plan as early as possible. The earlier we catch them, the easier. cheaper and faster they 
are to correct. 

Project Meetings 
These can be a bore and a pain, or alternatively, an opportunity for team-building. Meetings 
should normally be held weekly. Friday afternoon is a good time. This is a time when people 
are generally less productive than normal anyway (the weekend beckons!). People also have 
an incentive to get finished and this can make progress through the agenda swift. The 
meeting should involve all members of the team, as well as any outside resources who are 
currently directly involved. On certain occasions, such as major review points, there may be 
management, sponsor or user representatives present as well. An agenda should be prepared 
to ensure that the meeting has focus and does not waste the time of participants. Progress on 
all activities should be checked with the parties concerned. Work assignments and 
workloads for the next week should be reviewed, and consensus and commitment sought. 
Problems being encountered should be raised for discussion. If they can be solved with the 
input of those present at the meeting, this should occur and the resolution recorded. If they 
cannot be resolved in the meeting, an individual should take responsibility to pursue a 
solution and advise the group. This responsibility (action item) should also be recorded. 
Minutes should only list responsibilities for actions and decisions taken. not all of the 
discussion. Minutes for a nonnal project meeting should not exceed one page. It is essential 
that the minutes are prepared and distributed rapidly. If we hold the meeting on a Friday 
afternoon, everyone should have them on the next Monday morning. Neatness, spelling and 
pretty fonts are less important. Get the infonnation to the people who need to act upon it. 
Electronic mail facilities can be a boon here. 

Walking About 
In the 1980's Management by Objectives (MBO) became very popular. This is still a good 
approach for project management since we have definite objectives which we wish to 
achieve. We should couple it with a far more basic approach which is regaining favor at the 
moment, namely Managing by Walking About (MBW A). Don't get so involved in talking to 
the project management tool, I.T. management, and the steering groups that you fail to pay 
attention to the issues facing your staff at the coal face. Get out of your office, chat with the 
staff and see how things are going. Lend advice where you can. Pick up problems in an 
infonnal way and act to resolve them just as if they had been raised in the formal weekly 
meeting. Often staff, particularly juniors, will have problems raising issues in formal 

192 Managing Information Technology Projects 



meetings with seniors present. They may be much more relaxed and open when discussing 
one-on-one. Keep an eye out too for the morale of the team and the quality of work being 
produced. 

Crises of Realization 
It is a fact that humans don't relate easily to long-term goals. If the next deadline is six 
months away, we tend to go into "manyana" mode. We feel that there is lots of time, and so 
we can spend time now thinking, relaxing and generally getting ready for when the real 
work starts. Usually we wake up to the fact that we have not really begun the task when the 
deadline is imminent (no more than a few weeks away). This is called the "crisis of 
realization" illustrated in figure 11.2. Suddenly we begin to work hard, put in extra effort, 
work overtime and try to meet the deadline. Unfortunately, we frequently leave it too late, 
and cannot catch up. The solution to this phenomenon is to schedule in detail so that we 
always have an imminent deadline, no more than one month away. In this fashion, we will 
have many mini crises of realization, but we will catch up each time, because we can sustain 
the extra effort for a short burst. The moral is that we need to plan in detail and have 
frequent deadlines with associated deliverables. This will keep the team under constant 
slight pressure, which is positive. 

crises 
~One large crisis 

Time 

Crisis of Realization Figure 11.2 

Abandonment 
It is an unfortunate fact that projects can be abandoned during their execution without 
meeting their objectives. This can occur for many reasons, including the following: 

• The original scope of the project was too ambitious and it proves too expensive or 
technically infeasible. Solution: Do a proper scoping and feasibility analysis at the 
beginning. Consider scaling back instead of canceling 

Chapter 11 Project Execution 193 



• The skills to complete the tasks are not available. Solution: Consider lower-tech 
ways of achieving the same results. Draft consulting skills in from outside. Consider 
skill feasibility at the project outset 

Budgets dry up (This can sometimes be beyond your control, but is avoidable in 
many cases.). Solution - try to ensure that your project is seen as a critical one by 
senior management. Sell the benefits that it will deliver and keep them informed of 
real progress. Keep within the assigned budgets to assure them that the goals can be 
achieved for the agreed amount 

• Loss of key staff members. Solution: Watch staff motivation carefully. LT. staff are 
highly motivated by their work (more on this in a later chapter) and are extremely 
unlikely to leave in the middle of an exciting project unless they have become very 
frustrated. They like to see a job complete and in production, so something must be 
wrong if they want to leave in the middle. Of course, sometimes there are 
circumstances beyond our control, but we can certainly minimize the problems by 
being sensitive 

• Change of corporate policy, direction or priorities. Solution: Stay close to the 
pOlitiCS, policy-making and direction-setting in the organization so that the project 
can track these if necessary 

When the project still has to be terminated early, this must be handled with great care. It can 
be extremely demoralizing for the staff to see their hard work getting shelved. You need to 
pay particular attention to reassigning individuals to try to ensure their continued career 
growth. Also, emphasize the positives - for example, the skills which they have gained 
through the project. Try to see if there are things that the project created which can be 
salvaged and used in other projects which will continue. Watch your own morale - projects 
do get canceled and this should not be taken as a sign of personal failure. See what you can 
learn from the experience and grow. The sun will come up in the morning, and we live to 
fight another day. 

194 Managing Information Technology Projects 



Case Questions 

MyWay Organizer 

Q11.1 
Using the plan you built in Q9.1 through Q9.4, record actual effort and durations as follows: 

ID Description Planned Actual Planned Actual 
Duration Duration Effort Effort 

a Prototype User Interface 10 days 11 days 10 days 11 days 
b Design Phys. File Structures 2 days 2 days 2 days 3 days 
c Map Funct to Module Structures 3 days 1 day 6 days 3 days 
d Define Interfaces 2 days 2 days 2 days 3 days 
e Define global memory structures 2 days 1 day 2 days 1 day 
f Compression algorithm 5 days 10 days 10 days 9 days 
g DeSign common modules 5 days 7 days 5 days 9 days 
h Design normal modules 8 days 6 days 8 days 8 days 

Predict performance 3 days 4 days 3 days 6 days 
j Define standards for coding 5 days 12 days 5 days 4 days 
k Devise test plan 5 days 4 days 5 days 5 days 
I Prepare test cases/data 5 days 7 days 10 days 10 days 
m Review phase deliverables 2 days 1 day 6 days 5 days 

The project manager has expended 40 mandays which are not included in the above. 

How is the project doing in relation to planned completion dates? How is it doing in relation 
to budget? (15 mins) 

Q11.2 (requires the use of a project management package) 

Record the data from Ql1.1 against the plan created in QlO.1 through QlO.4. How is the 
project doing in relation to planned completion dates? How is it doing in relation to budget? 
How would you adjust estimates for the next phase (Programming and Unit Testing)? 
(15 mins) 

Q11.3 
Use the plan you built in Q9.1 through Q9.4 as a starting point. Assume the project is about 
to commence. You have heard that Mary Lloyd will be leaving the company. You have no 
choice but to assign her work to John Fowler until a replacement is available, which wiII be 
in two months time. What will the effect be on the overall plan in tenns of delivery dates and 
cost? (20 mins) 

Chapter 11 Project Execution 195 



Q11.4 (requires the use of a project management package) 

Use the plan you built in QI0.1 through Q10.4 as a starting point. Assume the project is 
about to commence. You have heard that Mary LIoyd will be leaving the company. You 
have no choice but to assign her work to John Fowler until a replacement is available, which 
will be in two months time. Make these changes to resource assignments within the package. 
Recalculate the schedule. What will the effect be on the overall plan in terms of delivery 
dates and cost? (20 mins) 

196 Managing Information Technology Projects 



1 2 Measurement 

Why Measure? 
Figure 12.1 indicates that measurement should be performed continually throughout the 
project, as we execute and complete tasks. 

Few organizations would embark on major capital expenditure without a thorough feasibility 
study, a budget specifying how and when the money will be spent, and then carefully track­
ing delivery of the products they were purchasing, or having built. It seems strange then that 
organizations routinely do this for software projects. But are software projects really capital 
investments? Absolutely! In a recent study conducted by one of the authors involving some 

( 
( 

C 
( 

Project Lifecycle 

Execute 
Tasks 

Collect 
Results 

Check 
Quality 

Assess 
Progress 

1 
) 

Until All Tasks 
Are Complete 

Per Phase 

( Terminate I " .. / 

Figure 12.1 

Chapter 12 Measurement 197 



45 projects across 20 organizations, the average project size exceeded 400 manmonths, 
giving a cost of over $1 million per project. This money will be spent over a period of time 
to create an asset from which the organization hOpes to gain future benefits. Sounds like 
capital investment to us. 

Another very good reason for measuring, is to gain control of the software development, 
maintenance and implementation processes. Costs tend to migrate from any area which is 
placed under scrutiny. If we closely monitor bug removal during testing, we will find that 
the testing process becomes more efficient and effective. If we concentrate on rewarding 
people for creating reusable code and thus introduce ways to measure reuse, we will achieve 
higher reuse. Thus measurement of appropriate things will encourage development in 
desirable directions. 

We may also want to measure to establish a baseline. If we are going to introduce a new 
technology (e.g., CASE) or methodology, we cannot verify the benefits claimed for it, or 
understand the impact on our projects, unless we have a basis for comparison. What we need 
to do is measure the situation before introduction of the new approach, and again afterward. 
Only then can we actually see whether the change is yielding the desired results, and to what 
extent. Watts Humphrey points out in his model of software process maturity (figure 12.2), 
that to successfully use technologies such as I-CASE, an organization has to have a stable, 

,------.::l-, - Achieved a stable 

-Ad Hoc 
• Little Formality 

• • Tools informally 
applied to 
process 

process with 
repeatable 
level of 
sta tistical control 

• Support automatic 
I--"'~~+"""" ____ -' gathering of process 

Establish basic 
data 

f-:----:.".,...,~~~-' process Use data to analyze 
management to and od'fy Establish a 

~------:,...."...--" process group 

Initiate rigorous 

establish quality proc;ss~s 
and cost parameters .. 

'--:--:-:------:.....,-----:--' project Establish software 
development 
process 
architecture 

Establish a process 
management, 
management 
oversight 
and quality 
assurance 

\ 
database 

Gather and maintain 

Introduce software process data 

engineering 
methods and Assess relative 
techniques quality of each 

• /product and inform 
I / management 

Activities to enable transition to the next level 

Humphrey's Five Levels of Maturity 

198 Managing Information Technology Projects 

Figure 12.2 



managed, repeatable development process which is under statistical control. This means that 
we have to understand how we do things now, and have the baselines against which to 
compare when we introduce any changes. To move to the higher levels of maturity, where 
significant productivity and quality benefits are achieved, organizations must implement a 
measurement process, collect data, analyze it, and act upon the results. Measurement of both 
quality and productivity is necessary. We will return to this theme later. Peter Drucker sums 
it up well: 

If you can't measure it, you can't manage it 

It seems surprising then, that in numerous surveys conducted among software development 
organizations, less than 10 percent have a formal metrics program, or any real quantitative 
measurement of their software production process in place. Is it really so difficult? Or 
perhaps we are just not too keen on what we might find. 

Returning to our recurrent theme - if we want to become more professional as managers and 
software developers, we must institute proper disciplines of planning, estimating and 
measurement. We acknowledge that measurement in the software field can sometimes be 
difficult, but to quote Tom Gilb: 

Anything you need to quantify 
can be measured in some way 

that is superior to not measuring it at aU 

What Should We Measure? 
Viewed from a management perspective, a system development organization can be thought 
of as a systems factory, as in figure 12.3. We feed resources (money, people, skills, 
materials; machine time, etc.) in one side, together with requirements, and we receive 
products (software, documents, services) out the other side. Some fundamentals to measure 
are the quantum and value of resources we are putting in, the quantum and the quality of 

nme~ 

Resources 

System 
DeV~ -----.. DataBases 

.. ~- c ~u," 

Money ----_ 

Information 

People 

The System Factory Figure 12.3 

Chapter 12 Measurement 199 



what we are getting out, how long it takes to receive a certain amount of output, and what 
the ratio is between what we feed in and what we get out. This will give us an indication of 
how effective our "factory" is. 

Other measures are appropriate for other types of projects. For example, a maintenance 
project might be measured by how responsive the team can be to the changing business 
requirements. A hardware implementation project might be measured by the number of 
hardware devices installed per unit time, and so forth. Some factors remain constant. We 
need to know: 

• The cost of the resources going in, so that we can compare this with our initial 
budget on which the project was justified 

• The amount of output produced, and when it was delivered. This allows us to gauge 
progress against the planned delivery 

The quality level of the output. There is no point in receiving masses of deliverables 
if they are garbage 

The ratio of input costs to value of output will provide us with a measure of team 
productivity and the development process and tools 

• When the deliverables have been produced, as this can affect their value in terms of 
anticipated benefits. It also allows us to track progress versus the original plan. 

Figure 12.4, "Measuring Productivity", provides a framework showing how different 
measures can be related. From this it is apparent that, to measure productivity, we need a 
number of more basic measures in place first. It is somewhat like accounting for a business. 

Quality 

V81," < 
/ Quantity 

Productivity 
Personnel 

Cost E---- Resources - ___ ~ 

Complexity ~ 

Measuring Productivity 

200 Managing Information Technology Projects 

Resuability 

Defects 

Size 

Functionality 

Time 

Money 

Hardware 

Software 

Environmental 

Constraints 

Problem 

Difficulty 

Figure 12.4 



We might really want the profit figure, but we need the expenditure and revenue figures 
before we can calculate it. 

Limitations 
In measuring systems projects, the inputs are relatively easy to quantify. They are normally 
related to people costs, equipment costs, and direct expenditure. People costs are normally 
measured by time spent on the task multiplied by a cost per unit time. The cost is usually a 
composite of salary and benefit costs, together with overhead costs. Overhead costs include 
the provision of office space, typing services, telephones and other infrastructural items. 

Equipment costs can normally also be translated to an hourly or daily rate and calculated 
fairly easily. Direct costs include such items as purchase of manuals, copying charges, 
project team lunches and so on and are simply tabulated. 

Measuring output is much harder. We have already discussed (in chapter 7) the limitations 
of Lines of Code for measuring the size of a product. To recap: 

They are language dependent 

They do not measure functionality 

You get what you measure - measuring lines of code encourages verbosity 

• Nobody can really agree on how to count them 

We came to the conclusion that, although it too has its limitations, the best available measure 
at the moment is Function Points. We will use this technique to try to gauge such things as 
relative productivity of a project team. Other suitable measures will have to be introduced 
for nondevelopment projects. 

Measuring Progress 
One of the most difficult things to get a handle on is just how far along, i.e., how complete, a 
project is. We are all familiar with the 80 percent syndrome. We ask the project manager 
how things are going and we are told, "We are 80 percent complete." Unfortunately, this 
remains the status for 80 percent of the project lifecycle. How can we really find out what is 
going on? The answer lies in assigning a value to each deliverable or task. When we set up 
the project plan, we devised a Work Breakdown Structure (WBS) and a Product Structure 
Model (PSM). Either of these can be used to track progress in a very simple, quantitative 
way as shown in figure 12.5. 

The model we choose to use must be completed at the planning stage (although of course it 
can be expanded at each review point). It must also record an estimated effort and duration 
for each task. To record progress, as we work through the project, we record on the model, 
for each deliverable received and quality checked, the actual effort and delivery date. 

Chapter 12 Measurement 201 



•..... ].. Develop 150 i 
~L~y,~~~~. }~~~ 1

36
.7% 

0% 

Write 40 25 
100% 100% Program (20) 10%. Program 0% 

~~~~ 2~~~~~ 

Recording Actuals on WBS Figure 12.5

Value of Work Complete
At any time, we can then compute our Value of Work Complete (YWC). This is done by
summing the budgeted effort for each completed task/deliverable as shown in figure 12.6.
This is the value of the work delivered to date according to the original plan which
represented what we agreed to deliver at what price.

To determine the actual expenditure to date, we simply sum the actual effort for each
completed deliverable as well as those which have begun but are not complete. The actual
effort expended against these activities should be updated on the model at each project
meeting.

The Binary Deliverable
Please note that no deliverable is ever counted as partially complete. It is a binary situation:
either it is finished (including quality checking) or it is not. Less than 100 percent is 0 per­
cent. We can derive percent complete figures for summary tasks or products higher up in
the model by calculating the proportion of the child-box effort which is complete. This is
shown in the accompanying diagram, "Recording Actuals on WBS". The ratio of the parent
attributable to a child-box should be derived from the budget figure of the child-box divided
by the budget figure for the parent-box. Thus if the parent was budgeted to require 85 days,
and the children 10, 10,40 and 25 days respectively, and the first two child-tasks are com­
plete, then the parent can be said to be 20/85 = 23.5 percent complete. It will still be 23.5
percent complete if the third child has begun and has used 20 days, but is not yet complete.

202 Managing Information Technology Projects

Task Budgeted
Plan Projects

~ Functional Specifications
Data Model
Design Database ~ Design Programs 10 i

Write Programs 40
Test Programs 25
Document System 30

150
Value of work completed 55

% Complete = 55/150x100 = 37%
% Budget Expended", 86/150x1 00 = 57%

Calculating Value of Work Complete

Complete
y
y
y

y

Y
n
n
n

Actual
10

22
5
8
6

20
o
15

86

Figure 12.6

This philosophy is extremely important. It will encourage the team to plan in detail, since
they will not get credit for deliverables which are not totally complete. If they plan for a
deliverable which is 40 days long, they will appear to be behind schedule for 40 days while
they spend time on it without receiving credit for work delivered. The smaller the
deliverables become, the sooner they will receive credit for work complete, and the less
apparent pressure there will be. This is very positive since shon horizons eliminate the
"manyana mode" which we spoke of earlier. A slippage on a shon task is also far less
damaging to the overall schedule, since it allows us to catch problems early and to catch up
with a sustainable burst of energy.

We will show in the next chapter how the same figures can be used very effectively for
reponing progress.

Timesheets
Unfortunately, collecting actual effort involves that great bugbear, the timesheet. Project
staff hate them, and we can usually sympathize wholeheartedly, having had to endure them
ourselves. They are, unfortunately, a necessary evil. We can minimize the problems asso­
ciated with their use by:

Not recording in too much detail. It is not realistic to try to track every 15 minutes.
One organization we saw had timesheets that broke the day down into tenths of
hours. That means each division was 6 minutes! When the time spent by staff was
analyzed in this excruciating detail, what did they find? You guessed it: About a
quarter of everyone's time was spent completing the timesheets. That is clearly
ridiculous. People also resent it if they have to fill in that they went to the rest room,
made a private telephone call, or filled in the crossword over lunch. We all need
some personal private space

• Making the purpose clear. We should make it clear to staff that the timesheets are
not being used as a policing mechanism to see if they are working hard enough. They
should understand that they are being used to gather information which will help us

Chapter 12 Measurement 203

to find out where the time goes, to pick up problems early when people are having to
put in inordinate amounts of extra effort to remain on schedule, and where our initial
estimates were very inaccurate. Stress that the information is to be used to help all of
us as a team to work smarter rather than harder. Of course, having promised this, you
have to stick to it. The first time you berate an employee for not putting in the
required amount of effort based upon the timesheets, you immediately lose all good
data since others will be too scared to put in real numbers that you may not like

Don't insist that the numbers add up to some predetermined "required" number of
hours per week. If you do this, people will pad activities to make it true. The half
hour spent on testing will become 1 hour to cover the time spent discussing a new
design idea with a colleague over the partition. Allow unspecified time; we only
want to know about time that was expended against the project, and possibly time
that couldn't be spent on the project because of problems needing resolution

Make it as painless as possible. Design a simple, easy-to-complete timesheet which
is not too detailed. Consider figure 12.7. We find that the most effective manual
format is a sheet for the week which looks like a week-to-view diary. Time divisions
should represent hours. Put space at the top to record projects being worked on and a
code for each. Then, during the day, as we change activities, all we have to do is
bracket the time we spent and put a project code and activity next to it. At the end of
the week all we have to do is add up the bracketed times for each project or activity

Name Hilary Rose Week Starting 12 May 1995

Project Activity

Debtors Rewrite Impact Assessment

do Spec changes

Maintain Slea Test Change 100-103

Monday Tuesday Wednesday Thursday Friday
07hOO

09hOO MSLStest DRSspec

08hooe 1
10hOO ____ l DRSsDec

11hOO

12hOO

13hOO

14hOO MSLStest .J ___ _

15hOO

J8b.Q0] DRSimp

J.9blli)

Other 2 hrs DRSspec

Code

DRSimp

DRSspec

MSLStest

Saturday Sunday

A Sample Timesheet Figure 12.7

204 Managing Information Technology Projects

combination. It helps if this can be done by a secretary or administration person,
taking the drudgery away from the project staff

• Set an example. You have to do one too, on time, and to the required quality level

Use of automated project management tools can assist with gathering actual effort expended.
Some packages have optional or built-in modules which facilitate capture of individual time
expended (a kind of online timesheet). An example is the Project Management Workbench
which has a well-integrated actual collections module. This summarizes times on a weekly
basis and loads them automatically into the actual values of the relevant project plans.

Budget
To measure our performance against budget, we must of course have a budget set up. This is
normally done at the outset based upon the expected expenditure per month. Expected
expenditure should include:

• People costs

• External resource costs

• Direct costs

• Charges incurred for use of equipment, license fees, etc.

As actual expenditure is incurred, this should be summarized on a monthly basis and
graphed against budget. Where inflation of people costs is a problem, we can choose to
budget and record these in resource time units, e.g., manhours/person-days. This cancels the
effect of inflation. For other expenses, a similar effect can be achieved by using an adjusted
currency value for all amounts. For example, amount in 1995 Escudos.

The simplest form of automation here is a spreadsheet, although some project management
packages have facilities for recording budgets and actual expenditures integrated with the
project plan. Where these facilities are available, they should be used in preference to a
stand-alone facility.

Staff Turnover
On large projects, or if you are managing several projects, it is very important to have a
handle on staff turnover. Often people leaving are expressing their final frustration with the
organization or project by voting with their feet. This should never happen if you are
keeping tabs on morale on an ongoing basis, but it can happen if somebody is not paying
attention. Any resignations should involve an exit interview where any information which
requires action can be picked up. The person leaving may finally feel free to express his
views in a totally honest and open way (He should, of course, have felt this way all along if
we created the right climate). He may be able to give you clues as to how to correct
problems, or alert you to the unhappiness of other team members. We probably do not want
to achieve zero turnover, since this would probably lead to stagnation of the team, but we
should try to aim for a figure below the industry norms. Remember that recruiting. training
and getting a new member up to full speed is a very expensive business - it can easily cost

Chapter 12 Measurement 205

half a year's salary and benefits for the position you are filling. There can also be negative
effects on the productivity of the entire team. Members who are under pressure on their own
assignments, and who have spent a long time on the project, may resent having to take time
out to show a newcomer how everything works.

Productivity
Productivity is the ratio of useful output achieved for a level of input. In systems terms, we
normally measure the input in resource units (e.g., man months) because this is independent
of inflation, and people represent our largest cost. Output can be measured in terms of
delivered functionality (Function Points). Productivity would then be expressed in Function
Points per Manmonth.

This is an external measure of productivity, and does not take into account the difficulty of
the problem (except as provided for in the Function Point calculations), the ease of use of the
development environment, the time pressure under which the team worked, the team size, or
any other special conditions or circumstances that affected productivity. We saw in the
chapter on estimating the large influence that deadline pressure can have on the effort
required to complete a project. Function points per person-month should thus not be used as
a measure of productivity of the team members, unless we can adjust it for the factors
mentioned above.

A commercial metrics approach and methodology, based upon the Putnam-Norden ap­
proach, which does compensate for the effects mentioned, is the Productivity Enhancement
Programme (P:>E>P) developed by the U.K.-based Butler Cox consulting organization.
Their approach uses the concept of a Productivity Index (PJ.) calculated as a composite pro­
ductivity score for a team. The calculation compensates for the effects of deadline pressure,
technological environment and project size.

Requirements Change
Monitoring the level of requirements change is a useful activity from several perspectives:

It allows us to make the team and the user community aware of the severe impact
that changes have on productivity, costs and schedules. This encourages people to do
it right the first time

It allows us to monitor the effectiveness of our specification gathering and design
processes. If we are frequently picking up major changes late in the Jifecyde, then
we should look to the approaches that we use in the early phases

It encourages a formal change management process which is good for quality and
reliability

Degree of change can be derived from the function point count of the changes expressed as a
percentage of the total function point count for the project.

Quality
As we have seen, it is not sufficient to measure output only in terms of quantity: the quality
of work produced must also be measured. Quality is a composite of many things, but

206 Managing Information Technology Projects

essentially it can be summarized as shown in figure 12.8.

Quality is conformance to (client) requirements - Philip Cosby

We will cover various aspects of quality in detail in chapter 15. For now consider the
relationships between various aspects of quality shown in the figure. We should also realize
that quality is not intangible, it can be measured in a very quantitative unit, namely money.
Of course, achieving quality is more complex, and involves many cultural and social issues.

Reusability
One of the best ways to increase productivity is to create output of high quality with no or
minimal input. This is obvious given our definition of productivity. What is less obvious is
how to achieve this in systems work. The simple answer is to reuse components which were
developed previously, and which have already been tested. We know that they are good,
since they are in production and have a measured, stable performance. We can obtain this
output at minimal cost: i.e., the cost of cataloguing what we have, and identifying the correct
component to reuse.

Reuse is not restricted to code modules, as many would believe. We can, with careful
analysis and design, create many reusable components of various types. An engineer
designing a building does not usually invent a new type of roof structure for each building.
Instead he will draw upon a library of plans of suitable roof structures and choose one which
meets the requirements for the particular building, project and circumstances. All he will
then have to do is to scale the design, and make any necessary unique adjustments. In a

Productivity

Measuring Quality

USE FACTOR

Operation
Reliability

Efficiency

Usability

evision

CRITERIA
Accuracy

Completeness

Consistency

-- Machine Efficiency

Communicativeness

Accessibility

~-Maintainability

Conciseness

Legibility

Modularity

Structuredness
-------Testability ----..,...c:::__...

Translation~Portability

~Reusability
Machine
Independence

Figure 12.8

Chapter 12 Measurement 207

similar way, we can reuse specifications and designs, as well as file structures, program
code, test data and many other components even parts of user documentation.

Reuse can occur in several forms:

• Cloning - taking an existing component and modifying it slightly to fit a new purpose

• Scavenging - working through existing code not originally written with reuse in mind
to identify components which could potentially be useful in other contexts and
projects

True reuse using components in a completely unaltered state

Cloning and scavenging do not realize the full benefits, since modified or adapted
components will have to undergo the same testing as a new component. This can consume
50 percent or more of the development effort. True reuse is certainly the frrst prize. It does
require some cultural changes in the organization, including:

Promulgation of reuse as a goal and a strategy by management

Establishing a library of reusable components into which projects will make con­
tributions

Pro-active creation of modules of code, and other components, with the express
purpose of making them general and reusable

Active use of reusable components during projects to reduce the amount of effort
required to deliver the required product

Monitoring of the level of reuse being achieved, and of the reusage count of
components in the library

Encouragement of reuse by rewards for creators of reusable components, and for
users of components

The above, of course, requires careful selection of the manner in which reuse is calculated
and the units in which it is quantified. Our recommendation is that components should be
sized in terms of function points when collated into the library. Reuse levels should then be
computed as the percentage of function points in the completed system derived from the
library and used in an unmodified form.

Organizations which have adopted reuse in an aggressive way with very impressive results
include Celite Sales Corporation with the Application Software Factory concept, reported by
Swanson et al. in MIS Quanerly. Over a period of 3 years, they were able to increase
software reuse to a level of over 90 percent resulting in huge cost savings and the ability to
deliver new functionality extremely quickly and reliably. These benefits can be obtained
with very little new technology, and without increasing staff levels. Object-oriented
approaches promise high levels of productivity and quality as well as maintainability and
flexibility, largely through a philosophy which encourages the identification of the generic,
and the building of highly cohesive, slightly coupled components which are easy to reuse.

208 Managing Information Technology Projects

Integrating the Measures
To obtain a composite measure of effectiveness of a development group, we suggest that the
aspects of quantity and quality should be integrated into a single measure. This is rather
difficult, since they are normally measured in different ways. Productivity could be
measured in function points per person-month; and quality in the Cost of Non-Conformance
(CONe). We will detail the computation of this fully in the chapter on quality. Reuse should
be actively pursued to decrease cost and increase quality, but it is not necessary to include
this as a component of the final measure, since it will be reflected in higher productivity and
quality where it is successfully achieved.

To obtain a single measure, we recommend turning both measures into a single unit, namely
money per quarter. We can do this by calculating the value of a function point in the
following way:

Cost of systems department per annum

Value of Function Point (VjN New function points delivered per annum

We can then determine the value added to the organization for a given quarter as follows:

Value added (Va) = (Function points delivered this quarter x Vfp) - CONC this quarter

This measure will allow us to track on a quarterly basis how the value added to the organiza­
tion (including aspects of productivity and quality) has changed. A bar chart showing the
two components (value of FP delivered and CONC) and the resulting total, provides a good
graphical representation allowing assessment of progress at a glance (figure 12.9). It also al­
lows us to see the relative situation with regard to productivity and qUality.

381111
3'111
34888
3211.
3 •• ea
28818
n.1I
24111
221118
2.1 ..
18888
1 "III
1481.
121118
i

8881
UIB
4111
28118

Vliet
":' HOC

V.IAid

.:.-.

Nonconformances

IL---~--------~------~r-------~~--~

Value-Added Performance Figure 12.9

Chapter 12 Measurement 209

Purists will have noted that our baseline figure for the value of a function point is calculated
on a yearly figure. This is arbitrary, and you could use the total data for as many years as
accurate figures are available. This should be caJculated only once at the outset, and should
be used as a basis for comparison thereafter. We can if we like, of course, compute new
vaJues for the Vfp each year and graph these. The overall trend, if we are succeeding, should
show that the cost to deliver value to the organization is declining.

Stati stica I Process Control
Statistical process control refers to a state in which a process is repeatable with known
outputs being produced within established limits. As applied to software development (or
instaJlation, implementation of packages, etc.) it requires that we have the following:

A defined process which is followed. This is normally defined by the methodology in
use and the organizationaJ standards

Appropriate measurements in place to determine the level of output, the quaJity of
output, and the efficiency of the process

A change management process, whereby changes to the defined process are assessed
for likely impact, implemented in a controlled way, and monitored through measure­
ment for effectiveness

These concepts are illustrated in figure 12.10.

Perform
Tasks I

1

3

Statistical Process Control

Defined Process

Deliverable
Definition

Quality
Check

Deliverables

. ~

2

.4
!

210 Managing Information Technology Projects

j
Compare
Results to

Established
Norms

""~: <.

6

;5

i

J

..

7
Refine

Current
Practice

i

Figure 12.10

We begin with a definition of how the task should be performed, and what a high quality
deliverable resulting from completion of the task should look like. We perform the task ac­
cording to this standard, producing the required deliverables. We then measure the actual
resource consumption, product quality and other relevant factors, e.g., performance of a
piece of code. Next we compare these measurements to established norms derived from pre­
vious measurement. If this is the flrst time through the cycle, we will have to use measure­
ments derived from other similar installations, or best estimates. On subsequent iterations,
we will be comparing to our own history. This analysis will tell us how we are performing.
If performance is falling behind previously established expectations, we should look to the
process to try to identify the sources of problems. Alternatively, where a new approach to a
task is suggested, it may be performed with careful monitoring, and the effectiveness of this
new technique compared with previous benchmarks. If this shows that the new technique is
more effective, then it may be wise to change the standard definition for the task, or
deliverable(s).

Once a process is under statistical process control, we are then in a position to improve it
continually. Measurements will tell us which parts of the process are not working as
effectively as they should. We can then examine the activities which are carried out there,
the teChniques and tools employed, the skills of the people performing the task and various
other factors to determine how the problem can be solved. Once a solution is proposed, it
must be put into operation with proper measures to determine whether it is effective. If it is
proved effective in a pilot project, then we may want to scale this up for general use.

The approach has been successfully employed by companies like Hitachi Software and
Computer Sciences Corporation. We will discuss the details in chapter 15, which deals with
quality.

Organizational Issues
Work performed by De Marco and Lister has produced some extremely interesting results
related to organizations and relative productivity. They conducted "Coding War Games"
over several years, starting in 1984. These involved the development of a consistent program
from a given specification by participants from a wide variety of companies using their nor­
mal technical environment during normal work time. This obviously required the knowledge
and support of their organizations. Over 600 developers from 92 organizations have par­
ticipated Clver the years. The objective was to examine the issues of programming quality
and produ;::tivity over a wide range of organizations, technical environments and program­
ming languages. The surprising result was that productivity was affected far more by or­
ganizational issues than the technical environment or language. For example, they found that
productivity varied by a factor of about 1 to 10 across all participants, but only by an average
of 21 percent between members of pairs evaluated from the same organization. Signiflcant­
ly, there VIas no correlation between productivity and programming language, years of ex­
perience or salary.

This hold~ a very important message for managers: We should maybe look somewhere other
than technology when we seek to increase productivity - maybe we need to look at organiza­
tional factors. De Marco and Lister began to do just that. They found that some work-place
factors haj extremely high correlations with the productivity and quality results obtained.
These issues are summarized in table 12.1, and show a signiflcant correlation between
quality and quiet, as well as a direct relationship between density and noise.

Chapter 12 Measurement 211

Environment Factor

Dedicated work space

Quiet

Private

Silence phone

Di vert calls

Needless interruptions

1st Quartile
Performers

78 sq ft

57%

62%

52%

76%

38%

4th Quartile
Performers

46 sq ft

29%

19%

10%

·19%

76%

• Significant correlation between quality and quiet
• Direct relationship between density and noise

Coding War Environment Table 12.1

Tom n..Marco and Timothy Lister, Peopkwan: Productive P1'Ojec/S t7.IId Teams. C1987 by Tom n..Marco and Tunotby Uster.
Adapted from Table 8.3. p.49. by permission of Dorsel Hoose Publishing. 353 W. 1251 .• New Yolk. NY 10014. All riglJlS reserved.

They point out that the density of seating within a given area is directly related to the level of
noise. Noise, in turn, has a detrimental effect on both productivity and quality. Research
suggests that this may be due to the interruption of the mental condition of "flow" required
for sustained creative work or work on complex models or problems. We are all familiar
with the scenario where we feel that "nothing gets done between 9 and 5" because we are
continually interrupted by the telephone, people 100rn1ng over the partitions, noise from
other offices, etc. It takes about 15 to 20 rn1nutes to fully immerse oneself in a complex task
- to "get your head around it". Only then can you really perform at a nonsuperficiallevel. A
single interruption, no matter how short, destroys this condition. Several small interruptions
during the day can thus rob us of an enormous amount of productive time. This is illustrated
in figure 12.11. We will frequently find developers cOrn1ng in early, or working late into the
evening to escape these problems. "I get more done between 6 and 8 in the morning than the
rest of the day."

Considering that the cost of providing office space for professional workers is only about 10
percent of their total cost. it seems silly to scrimp and save here when we could be costing
ourselves orders of magnitude in productivity. These figures should be used to convince
management to provide systems staff with productive accommodation. Key attributes in­
clude:

Sufficient office space, and work sUrface. Most computer professionals need space to
accommodate a terrn1nal andlor personal computer, as well as room to spread out
several design documents

• Privacy. Interruptions by people walking past, sticking their heads over the
partitions, or having to answer someone else's telephone in an open plan area are
extremely disruptive. We once saw a consulting firm where about 12 consultants not
working at client premises were crowded into an open-plan seating area with one
shared telephone per 3 consultants. This place was a nightmare when most of the
people were present - interruptions were constant. When most of the people were
away, the few left there spent all day answering phones and taking messages. These

212 Managing Information Technology Projects

Superficial 15-20 Minutes

Immersed

Phone Call Phone Call

Dozen interruptions = 1/2 day

Flow Figure 12. 11

were highly skilled and very expensive people. Management's excuse was that they
wanted to encourage consultants to get back out to clients. This had some merit, but
it also meant that anyone who needed to do some productive work in a quiet place
(which was not available at the client site) couldn't do it at the office

• Ability to redirect one's own telephone calls. This allows us to concentrate on the
task at hand, and to batch telephone work to a couple of half-hour slots per day. Calls
should be fielded by a secretary who can judge urgency. Urgent ones could be put
through, others have messages taken. A good strategy, if you have the facilities, is
for the secretary to capture messages into an electronic mail facility. This makes
them available to the team member immediately when they want to look at them,
without interrupting them. It also provides a permanent record of important messages

• Freedom to choose work hours within reasonable limits. Generally people will put in
many more productive hours if they can choose their work times to suit themselves.
A working mother may want time off to fetch children from school at 2 pm, while
others may choose to come in early and leave early to pursue sporting activities.
Normally, there will be an agreed "core time" during which most people will be
available. This is when meetings should be scheduled. Again, e-mail makes this kind
of environment more practical, by providing an easy communication medium to
people who may not be in their offices when you want to talk to them.

De Marco and Lister have even invented an "Environmental Factor" or E-factor based upon
the interruption characteristics of the environment. This is calculated as follows:

Total Uninterrupted Hours
E-factor = Total Hours Present on Job

Chapter 12 Measurement 213

Good environments show E-factors around 0.38 and poor ones can be as low as OJ. This
means that to do the same quantity of meaningful work in the one environment, you have to
be present 3.8 times as long as in the other environment. More typically, if you are present
the same number of hours in each environment, you will produce only about 26 percent of
the work in the poor environment that would be produced in the good environment. Clearly,
we should fight to get our people a decent environment.

Introducing a Metrics Program
Introducing measurement in an organization is always an emotive issue. There is the danger
that personnel will think that they are being checked up on, and respond negatively. We
therefore need to sell the idea and the purpose of measurement very carefully. The objectives
we set out should include the following:

Establish a baseline which will allow us to know when we are improving

• Provide measures which will assist us in performing our work more professionally

• Provide evidence of value delivered to the organization to support LT. organization
motivations for increases, better funding, better facilities and office accommodation

Allow us to gain statistical process control over our activities, thus providing us with
the means to continually improve quality and productivity, without the need for
individuals to work extra hours

• Illustrate to management and the user community the effect of changes in require­
ments and unrealistic deadlines, thus paving the way for a more amicable relation­
ship

On no account should measures be used punitively at an individual or team level. The very
first time you do this you will lose the trust and cooperation of the people you need to carry
out the work and to provide you with accurate data. Your team members are not stupid. If
you use the numbers to measure them, and respond in a negative way, they will fudge them.
If we want meaningful figures, our use of the data gained must always be in a positive way,
to assist our people to do the best job that they can, and to remove obstacles which prevent
them from performing to their potential.

Self-Monitoring
One way to ensure trust is to allow people to monitor themselves. We have used this very
successfully, even down to junior-programmer level. Essentially, we discuss with the
individual concerned the project plan and the estimates for tasks assigned. We agree on
reasonable times for completion of the assigned work, and also establish the estimated effort
for the tasks as a measure of the value of the deliverables to be produced. The team member
then monitors his own progress toward completion, only requiring the intervention of the
project manager (or other senior staff) to quality assure components before they are formally
credited in the overall project plan. Having this information available to individuals visually
has proved to be a major motivator.

214 Managing Information Technology Projects

Allowing Mistakes
While the objective of measurement is surely to improve performance, we should be careful
not to expect perfection in every case. If we create an environment where there is no room
for error, we will stifle creativity and risk-taking. Both of these are necessary for a vital and
high-achieving team. What we need to do is manage the overall trends over a longish period
of time, not to expect that no one will ever make an error. We should, on the contrary, create
an environment where the occasional mistake is acceptable, provided that this is when we
are trying to stretch our capabilities. Mistakes in routine tasks should not be tolerated, but we
do need to allow people to experiment in new areas which show promise. When these
mistakes do occur, the individuals concerned should know that they can rely on the support
of their team. We should, however, take every opportunity to learn as much as we can from
the error, and not repeat the mistakes again. Having an environment where mistakes are
accepted will allow those involved to share the experience fully and openly with the rest of
the team, thus maximizing the learning opportunity.

Commercial Products
We have already mentioned one commercial measurement program, namely the CSC Index
(previously Butler Cox) P>E>P program. There are several others which you should be
aware of. These include:

• An integrated toolset from Quantitative Software Management (Putnam's organiza­
tion) which includes: software to manage a database of project data, PADS (Produc­
tivity Analysis Database System); software to size systems; a resource estimating
and planning tool, SLIM"'" (Software Lifecycle Management); and SLIM Control, a
project tracking tool allowing monitoring of actuals versus plan

• A product called METKITr"" which is a byproduct of the Alvey research in the
United Kingdom and the European ESPRIT projects dealing with software construc­
tion techniques

• LOGICSCOPET~ is a commercial software measurement tool marketed by the
French flrm Verilogic. It offers static and dynamic testing tools

• QUALIGRAPW'" is a tool marketed by the Computor Kontor company in Germany.
It helps to document the structure, complexity and other variables of software. These
can aid in determining productivity, maintainability and quality

Summary
We feel that measurement is vitally important. If we do not know where we are, it is difflcult
to plot a course to go where we want to be, and to know whether our actions are taking us in
the right direction. We are shooting in the dark if we introduce new technologies and
methods without first establishing a benchmark, deflning the objectives for the new
approach, and measuring the results. Measurement does not constitute a large overhead
relative to the kinds of inefflciencies we typically encounter in systems shops. Yes, it is
difflcult, and the techniques and measures available have their limitations, but even if the
measures are not that accurate, the very act of measuring conveys a subtle message that this
is important, and that alone can yield significant benefits. As time goes by, we can improve
the overall process and project management approach that we use, and the metrics we
employ as an integral part of this.

Chapter 12 Measurement 215

Case Questions

MyWay Organizer
Q12.1
You are nearing the end of the programming phase of the MyWay Organizer project. The
Project started on August 1. Today's date is November 25. Your ana1yst has collected the
following data:

ID Phase Planned End Actual End Effort Estimate Effort Actual
a Requirements 30 Aug 28 Aug 36 Mandays 46 Mandays
b Design 1 Oct 30 Sep 74 Mandays 77 Mandays
c Programming 5 Jan 165 Mandays 119 Mandays
d Integration Test 1 Feb 44 Mandays
e Cross Platform 1 Mar 31 Mandays

Test
f Marketing Material, 1 Mar 15 Mandays

License Agreements

Determine the Va1ue of Work Complete, the % Work Complete and the % Budget
expended. When do you think the project will be completed? (This may not give you enough
detail to satisfy management.) (15 mins)

Q12.2
To obtain more detail, you have spoken with the programmers and obtained further data:

Of 12 modules, 6 have been written and 4 of these have been fully tested and are working
correctly. Two more programs are being written. Modules are of approximately equal size
and complexity.

Determine the Va1ue of Work Complete, the % Work Complete and the % Budget
expended. When do you think the project will finish, based on this data? (15 mins)

Q12.3
Using the data from Q12.1 and QI2.2, how is the project doing relative to planned delivery
dates? How far ahead or behind schedule do you think it is? Would you change any plans at
this stage? (15 mins)

Q12.4 (Requires Project Management Software Package)

Update your project plan for the Organizer project in the software to reflect the planned and
actual durations and effort as detailed in Q12.1 and QI2.2. If your tool has the facilities,
calculate the VWC and budget conformance. (30 mins)

216 Managing Information Technology Projects

Q12.S (Requires Project Management Software Package)

If your package supports this, export the data regarding planned performance and actuals to
a spreadsheet package. Call this up in the spreadsheet and ensure that it is usable. (We will
use this later for derivation of graphs, etc.) (30 mins)

ThoughtWel1 Books
Q12.6
The design stage is nearing completion. The following deliverables were planned, and
columns shown indicate their status. Q.A. = Y indicates that the deliverable has been quality
checked:

Q.A. Estimated Actual Estimated Actual
Effort Effort Complete Complete
Persondays Persondays Date Date

Feasibility Study Y 30 24 June 15 June 13
Requirements Specification Y 60 75 June 30 June 30
Design Specification

Physical Database Design Y 18 30 July 10 July 8
Performance Requirements 12 9 July 10 July 10
Prototype Screens 9 12 July 12
Design Programs

Branch Programs Y 30 42 July 30 July 30
H.O. Programs 39 36 July 30

Test Specification Y 15 21 July 20 July 25
Programming & Unit Test 180 Aug 30
Implementation 60 Sep 15

The date now is July 15. The project began on June 1.

Determine the value of work completed and actual expenditure. Project the likely end date of
the project. Do you think the project will be over or under budget? By what percentage?
What will happen if you lose Lars Bontsen, who is assigned to complete the H.O. programs?
(Another analyst programmer with similar skills is available to be assigned.) (45 mins)

Chapter 12 Measurement 217

13 Reporting

Accuracy and Consistency
Accurate reporting is essential to let those not directly involved in the day-to-day activities
of the project obtain a clear picture of progress: what is being delivered, and what problems
are being encountered. A report should be done at the end of each phase, but possibly more
frequently, as shown in figure 13.1. Consistency is vital to allow proper comparison across
projects. A senior manager will not only be evaluating one project, but several. If each
project manager uses a different format for the report, and the phases are not consistently
named, it is like comparing apples and oranges through distorting spectacles. We could get
three project reports as follows: .

Project Lifecycle

Collect
Results

Check
Quality

Assess
Progress

J

)

Until All Tasks
Are Complete

/Per Phase

Figure 13.1

Chapter 13 Reporting 219

Project 1 "We are nearing the end of prototyping and have started fonnal data
modeling"

Project 2 "We have finished functional modeling and data modeling, and are busy
prototyping the user interface"

Project 3 "We are 80% complete on the unit testing phase"

What is the poor user to make of this? Are we behind, on schedule, or performing well?

A further problem is how to achieve consistency of reporting across a wide variety of project
types. We have already discussed the concept of configuration management in previous
chapters. This is a key too] in achieving consistent reporting. By having consistently named
phases for a variety of project types, nontechnical managers and users can relate to where we
are in a project. They will be able to get an accurate impression of progress on a variety of
projects being run concurrently, even if these include a mix of development, package
implementation, and technology deployment projects. For convenience, we repeat the
configuration management diagram with the phase naming and baselines as figure 13.2.
Note that the name of the phase and the baseline remain the same for all project types, but
that the detailed activities within the phase may change.

Information Technology Implementation Methodology

/,.,>'?),'/; ""H'-~:/ .. ~m",', ,;'";y::~/";'i~~/: <:-,?-

PaCkage I. TechnOlogy
Implementation. Implementation

.~ Functional·~====:::;;:=====~;== r-=-=-=-=-=-=-=-=---=------..
"i
&SAllocated

Product

Alternative Lifecycles

220 Managing Information Technology Projects

Figure 13.2

Now we might have three project reports like this:

Project 1 "We have delivered the conceptual baseline and have completed 40
percent of the deliverables for the operational baseline"

Project 2 "We have delivered the conceptual baseline and are 78 percent complete
with the operational baseline"

Project 3 "We have delivered the allocated baseline and are 40 percent complete
with the product baseline"

As LT. professionals, we might be uncomfortable with these vague-sounding tenns, when
we would rather relate to process charts, file designs and so on. But users and senior
managers find those to be incomprehensible, and would far prefer consistency. If you want
to change the names from those used by the IEEE, fine, but make sure that you are
consistent within your own organization.

Frequency
Reporting should be neither so frequent as to be a major overhead and irritation, nor so
seldom that the team loses focus and the sponsor develops an ulcer wondering what is going
on. Generally, the following guidelines are suitable:

The project plan and actuals should be updated and reviewed by the team and
project manager once a week

A formal report should be presented to LT. and user management once a month. This
may take the form of documentation or a presentation, depending upon the organiza­
tion culture. If it is verbal, make sure that the figures are recorded somewhere

A report to the steering body once a quarter. This should include a presentation with
time for explanation and questions. as well as formal documentation

You may want to adjust these frequencies to suit the circumstances. If the project is very
risky and critical to the organization, reporting intervals can be shorter. If the project is
routine, the project manager is very competent, and management is relaxed then maybe, just
maybe, intervals can be longer. In all cases where formal reviews are to be held, participants
should be provided with suitable documentation and an agenda ahead of time. This allows
them to come to the session conversant with the facts, and prepared for discussion of
problems, conSidering suggestions from the project manager, or asking penetrating ques­
tions.

Format
The report should be as concise as possible, but still convey all relevant details. We
recommend the following structure:

Cover page containing the name of the project, project code or identification, the
date of the report, the name of the person making the report, and a project organiza­
tion organogram indicating the reporting structures of the project. If anything in this

Chapter 13 Reporting 221

structure has changed since the last report it should be highlighted, either by shad­
ing/color or a vertical sidebar. Further information should include the last completed
baseline, and the total value of work complete calculated as set out in chapter 12.

• A status graph with time on the horizontal axis, and resource units (or money where
non-personnel expenditures are significant) on the vertical axis. The time axis should
be labeled in months, as well as have the phases indicated. Three Jines should
indicate:

The budgeted expenditure (which is also the planned rate of delivery of value)
as a cumulative figure against time

The actual rate of expenditure derived from collecting actual resource con­
sumption (and other expenditures if significant) graphed cumulatively against
time

The value of work complete derived from summing the value of 100 percent
complete and quality-assured deliverables as detailed in chapter 12, graphed
cumulatively against time

A Gantt chart showing the following:

All phases completed to date summarized to one line each

The current or imminent phase broken down and showing tasks at a summary
level of approximately three weeks duration. Use your discretion, and do not·
show more than 20 tasks

Future phases shown as soft estimates

Make sure that for all future tasks and phases you show the range of the estimates,
and not a single figure. If management insists on a single figure, use the top of your
range

A single page listing current problems and concerns, together with the best ap­
proaches currently known for their resolution, initials of who is following up, and the
expected resolution date

A page containing the list of action items arising from the last review, and the status
of these items.

A project plan in this format is a very powerful instrument, particularly when consistently
used across the organization and managers become educated in analyzing it effectively. One
can quickly identify projects which are running into trouble, others which are doing well,
and what the problems might be in those which are not delivering according to plan.

Example
The sample project report shown in figures 13.3 to 13.6 illustrates the format discussed
above.

222 Managing Information Technology Projects

MegaDodo Corporation
Personnel Records On Database Project

PROD
Progress Report as of

Prepared by

Last Baseline

Work Complete

June 1995

Stella Hayes

Functional

37"10

Project Organization

Sponsor

Bill
Norton

Technical
Specialist

Fred
Miner

Pro A

User

James
Rovost

Peter
Barker ! Replaces

,h--=-~~~ Tom Ryan

PROD Progress Report

In figure 13.4, observe the following:

Figure 13.3

The project expenditure is under budget, as can be seen in the Actual Expenditure
line on the first graph

• Value of work delivered is behind schedule, and below the expenditure. This
indicates a problem situation - the project is not delivering at the planned rate

• The project lost a staff member (Tom Ryan) who was replaced by Cherry Staten -
this can be seen from the project organogram on the cover page (figure 13.3).
Looking at the status graph, you can see that up to the middle of the requirements
phase, budget, actual expenditure and actual delivery were all very close together.
This indicates a project proceeding according to plan. At the middle of requirements.
the expenditure rose suddenly untill the end of the phase, and at the same time the
delivery rate (work complete) fell off. Since the end of the phase, expenditure has
stabilized again. and the value of work complete is again going up to meet the budget
line. What happened? The loss of a staff member meant that a new person had to be
drafted into the team. There was a period of overlap where we carried the expenses
for both people (Tom and Cherry). During this period, the output produced also fell
as a result of the effort devoted to hand over and the learning curve which Cherry

Chapter 13 Reporting 223

90

70

CI) 60 >-
(\l

50 C
t:
(\l

::
30

20

10

"

Feb March

""iii
::l

a.
Q)
to)
c
0

(,,)

Feasibility

Month '95

April May June July

Requirements External Des. Technical Design

Phase

August

PROD Status Report Figure 13.4

incurred to get up to speed. Judging by the graph after the end of requirements, it
appears that the project is getting back on track. We should remain cautious in
monitoring, as there is still a chance that the delivery rate will catch up with the
actual expenditure, but not with the original budget. This would result in delivery
within the budgeted costs, but late

Notice that all future tasks and phases in the Gantt chart are shown with both a
minimum and maximum time. The earliest the project could be completed is in the
fmal week of November. The latest the project should finish is the first week in
January. You will see that the review markers in figure 13.5 have used the
pessimistic schedule, so as not to create false hopes in the minds of management or
sponsors. If the reviews occur earlier than these dates, that will be a bonus

If desired, more detailed information about resource assignments and spreadsheets for
budgets and expenditures can be attached as appendices for those readers who would like to
probe further; the information shown will give a very concise, easily interpreted view of the
project in a minimum of space and time. Using this format consistently across all projects
makes it very easy for management to track project progress, and to focus attention on the
areas requiring it.

224 Managing Information Technology Projects

Initiation/Feasibility

Requirements

External Design

Technical Design

Program Design

Module Test Data

Documentation

File Design

Performance Criteria

Programming

User Testing

Installation

Planned Min

.. Planned Max

Completed

_Summary

Summary Project Plan

1995

Phase

Nov Dec : Jan

Q)
(j c C
nl 0
0. ~
Q) c (j

~
Q)

E ... Q)
Q) 15.. en

E ::::l
tl
0
a..

Figure 13.5

Chapter 13 Reporting 225

PROD

Critical Problems as of June 10 1995

Problem Action By When

JlJN.1 Clearance not yet obtained from Tax office
of Document Designs JR End June

JlJN.2 Programming Standards Documents not yet
available

SH 20 June

JlJNJ Screen design constraints for compatibility with FM
all existing field terminals to be documented

JlJNA User sign-off still not obtained on tax calculation
al~~m CW

rUN.5 CASE tool still unreliable - vendor examining SH
data

Resolution of Review Issues as of June 10 1995

Issue Description Action

FR. 1 Fields on screen ENQ-EMPI not reflected in CW
data model

FR.2 Naming of items inconsistent on Report
BEN-MTHL Y and screens CW

FR. 3 Missing performance constraints for batch runs FM

FRA Budget to be prepared for new equipment SH
required

Problems and Issues Report

226 Managing Information Technology Projects

20 June

20 June

15 June

Status

Done

Done

Awaiting
Vendor
Data

Done

Figure 13.6

Case Questions

MyWay Organizer

Q13.1
Using the planned and actual data from Q12.1 and Q12.2, prepare a graph similar to figure
13.3. (20 mins)

Q13.2 (Requires Project Management and Spreadsheet Software)

Using the spreadsheet data which you exported in Q12.S, use the spreadsheet package to
generate a graph similar to that in figure 13.3. (20 mins)

Q13.3
Prepare a summary Gantt on the status of the project for inclusion in a report to your senior
management. You may do this manually, with the project management package, or with the
spreadsheet data. (20 mins)

ThoughtWell Books
Q13.4
ThoughtWell senior management has become concerned with the state of the project. They
have heard from a progranuner that there are difficulties with something called TCPIIP
which "doesn't seem to be working". Also, they are worried about how their staff will
operate the system, which currently appears cryptic to them. They have also seen Lars
Bontsen disappear off the site. They have asked for a full report on the status of the project.
They would also like to know explicitly about any problems which may delay implementa­
tion. They are particularly nervous since it appears that Lars has joined one of their com­
petitors. (Your instructor may have minutes of recent project progress meetings to assist
you.) Your report should allay their fears, but should not compromise any facts or hide any
difficulties. Assume the project is at the point detailed in Q12.6. (40 mins)

Chapter 13 Reporting 227

Project Scope Control

1 4 Change and
Configuration
Management

A great many LT. projects fail when judged by our success criteria: delivery of desired
results, on time and within budget. A large proportion of these failures are due to the scope
of projects getting out of control. This can occur because we did not understand at the outset
what it was we were undertaking to do, or because we allowed the speCifications to grow or
change during the project lifecycle. We have already dealt with the first of these causes in
the chapters on initiation and project design. Two of the techniques discussed were context
diagrams and technical environment diagrams. They scope the project from an application
and technical perspective.

Studies show, however, that even if this initial scoping is done carefully, projects tend to
grow. One study examined the number of function points calculated from projects at the
requirements phase, and then re-counted these for the completed systems. The results
indicated that the scope of projects had, on average, increased fourfold. This is an obvious
problem for a project manager who is trying to stay within budget and deliver on time. The
effect is called "creeping featurism" and is attributed to the fact that users ask for more and
more to be included in the system as they see the potential for automation. In some cases
they try to take advantage of the system under development to do their jobs. They will
encourage systems analysts to put in facilities to handle every exception and circumstance
that they can remember in their experience on the job. While this may be good for
completeness, it can make systems unnecessarily complex and inflate project costs out of all
proportion. It does not make sense to spend a month's analysis and programming effort
putting in a function to handle an exception that only happens every two years, and can be
handled manually in a few minutes.

An allied problem is that of including things outside the scope of the original system. The
scenario goes like this: Projects A, B, C and D are considered during planning and
feasibility. Projects A and C are approved. The users of Band D realize that their pet
systems and functions will not be automated since their projects were not chosen. However,
projects A and C are running - why not try to persuade them to include the desired
functions? And this, of course is exactly what they do. Gullible analysts and project
managers are too obliging, and projects A and C become larger and larger, eventually
attempting to do everything that was in A, B, C and D in the first place. Chances are that

Chapter 14 Change and Configuration Management 229

they will fail, since we would not have left B and D out of our plans at the feasibility stage if
we thought that they could be delivered within the same deadlines with the same resources
as A and C alone.

Remember the effect of increasing size and complexity on project effort. It is like an
expanding balloon (figure 14.1), which gets ever bigger, until it eventually bursts, allowing
the benefits in the basket to fallout. Far better to get a simple system in on time to handle 90
percent of the cases, than to wait forever for one that will do everything.

An Expanding Balloon Figure 14.1

Configuration Management
We have seen in earlier chapters that configuration management concepts are useful to:

• Structure our projects

Manage different kinds of projects under one consistent framework

Report on projects in a consistent way, using consistent terminology

Configuration management, linked with change control, also gives us a way to manage the
scope of our projects to prevent the problems described above.

We are now going to examine the configuration management concepts in detail, and relate
them to scope management and change control.

Configuration management is a discipline that has grown up in the aerospace and military
contracting industry. It is primarily aimed at managing large, complex engineering projects,
with a research component. Many of these projects have significant software components,
and the electronics and software engineers frequently have to work very closely together to
develop hardware and software in parallel. People might be programming for a machine

230 Managing Information Technology Projects

which has not actually been built yet. This means that interfaces and specifications where
things overlap must be very carefully designed and managed. Configuration management
does just this. More recently, the Institute for Electrical and Electronic Engineers (IEEE) in
the United States has published documents detailing a Software Engineering lifecycle based
upon configuration management. This is the basis for our use of configuration management.
Configuration management is also fundamental to quality management, which we will
tackle in the next chapter.

Q)
c:
a:;
II)
~
m

Strategic Planning
Conceptual i!

r",,0
2::::::::::::::;:::::::::E:''''::::''"::::'';:''::=' .==-:::::::.b::.. .=::::y::::~e:::,.m:::,.:::.,:::, ::.:::":::' ::: .. _~.:::, ";:;;:'"-~'''':E''':::''' :;"";: ::: •.. ::: •• :: .• ~D:.:epa rt u re

c;

Operational
User Requirements I System

::...::t:;:::::::::===:.::::::::===s;:p::e:::c:::ifi;::;ca::t:::io::n;::::::::::=====:::::::.: ..:R,:equirements

External Design ::D

Functional
Specification Preliminary CD

_~===:...!!====:i========~==:::.~D::esign < ~.
UI

Developmen

Technical Design Critical

=~==~~~~==::::::.!~s~p:::e::::ci:::fic::a:::ti:::o.:::~.::: ... :::, •.• ::;: •• ;:;::., ::: ..•. :,:,.,::: •. ,;;:;: .. ::.. .!;;;~!!!.E3::::::...:D::esjgn

Product

Installation

Software and
Documentation

Preparation and
Installation

Product
r""",==_J Acceptance

~ ~V~~ion I Post ;, ..,_.f Implementation

Source: ITIM based on IEEE

Configuration Management Figure 14.2

Referring to the configuration management lifecycle diagram shown as figure 14.2, consider
the following:

• There are a number of phases in the lifecycle. The strategic planning area is
considered to be outside the lifecyc1e, hence the dotted line. It is significant because
this is where projects are assumed to be born. They arise out of a corporate planning
process or business need

• There is a fonnal review following each phase. These have specific names. The
departure review deals with the parameters from which the project departs: the

Chapter 14 Change and Configuration Management 231

initial vision, and tacit agreement with the client organization. This is followed by
the System Requirements review, which, as its name suggests, reviews the require­
ments specifications. These specifications form the basis for the management of the
project scope from this review onward. The Preliminary Design review checks the
output of the external design phase. This will include detailed specifications of exact­
ly how the system will behave in operation. Next we have the Critical Design review,
so called because this is a critical point in the project where we make the transition
from design (paper-based) activities to building and construction. After this point it
will be very difficult and extremely expensive to change the design.

The next review is the Product Acceptance review once the product has been built
according to the design. This is concerned with the client inspecting and testing the
produ.:t and accepting it for installation in production. Finally, we have the Post­
Implementation review, which is a learning opportunity for the project organization.
This is where we look at how things went and gather knowledge for the future. In
our adapted lifecycle, an opportunity is provided for this to occur at every review,
thus shortening the delay before new insights can be applied to other projects.

Associated with each review is a baseline. A baseline is the collection of deliverables
which are in place at the termination of the prescribed phase. The baseline is a
snapshot of the status of all documents and deliverables at that point. A competent
systems development methodology should prescribe what deliverables should be
completed by the end of each phase, and the form that each of these should take.
Each baseline has a specific name. The Conceptual Baseline is the project charter,
derived from the strategic plan, and is a vision of what the project should
accomplish, and within what constraints.

The Operational Baseline is of particular significance, since this is the anticipated
functionality and capability which the delivered product should have. It is called
Operational since this is what the client wants to be put into operation upon
successful project completion.

Concessions and Deviations
Down the left-hand side of the diagram, you will see concessions, after the Operational
Baseline. A concession is something which was present in the 'Operational Baseline
speCification, but which the team has found it could not deliver, and which the user concedes
may be left out. An example would be that the original specification calls for a system which
will automatically scan all source documents with an accuracy of 99.9 percent. We may find
that this can be achieved with current Optical Character Recognition (OCR) technology for
typewritten text of a certain quality. We find, however, that there is no similar capability for
handwritten text available commercially. We discuss this with the user, and he concedes that
we can alter the specification to stipulate that only typewritten documents will be accepted
for scanning input.

Deviations are shown on the right-hand side of each phase after the Operational Baseline.
These are items where the specification or design is deviating from the Operational Baseline.
The user does not concede that this is acceptable. These represent problem areas where the
design is not meeting requirements, and they must be redressed before the next review is
reached. An example here would be: The Operational Baseline specification calls for a
system which can process 1000 transactions per hour. Estimates at the Preliminary Design
review indicate that the current approach will handle only 600 transactions per hour. This is
unacceptable, and a deviation is recorded. Since the feasibility of the system and the
calculated benefits are based upon achieving 1000 transactions per hour, a suitable approach

232 Managing Information Technology Projects

must be found before the Critical Design review is reached. If this can be done, then the
deviation will beclosed.

The combination of concessions and deviations tend to guard against inadvertent changes in
project scope. If we are unable to deliver something which the sponsor wanted, we are
forced to negotiate a concession. This makes Sl.!Ie both parties are fully informed about the
impact of the change. On the other hand, if we have not included everything that we should
have, and it is possible to deliver the required features, then deviations alert us to this and
provide a discipline to ensure that these issues are addressed before the termination of the
next phase.

Estimating the Impact of Change
You will recall that we have built a product model during our project design. This contained
an estimate of the size and effort of each deliverable. We can use this to assess the impact of
requested changes as we proceed with a development project. For maintenance projects, or
where the requested change is to a completed deliverable, the product structure map with
actual sizes and efforts recorded can be extremely valuable in terms of assessing the impact
and effort associated with a proposed change.

The PSM diagram (figure 14.3) shows the configuration for a co-resident personal computer
"executive helper" product which provides diary, calendar and address-book facilities. It is a
shrink-wrapped product sold through retail outlets. Note that documentation is measured in
pages (pp) while software is measured in function points (fp). Both types of deliverables
have the number of mandays (md) spent on their creation recorded next to them. These kind

Software 70 md
Product 65 fp

" T' '>

I
F'ication 40 md Tutorial

25 fp

,:k,,,,.~, "'WH,.E$"r~~ -" .• , ".-:'./,0.

I I
Installation 20md . User
Guide 25pp ; Manual

Product Structure Model

I

: Executive
Helper
Product

User 84 md
umen· 190 pp
on

Doc
tati

30 md
40 fp

I
Design 22 md
Documents 120 pp

,.~ -.,,,,;¥ .,.". ''''-~ ;'

I I
45md Tutorial 5 md Reference

150 pp
II

Guide 8 pp
I

Card

t N',?'VYN<"~''''''''''_''''//' :;;;a;; •• ,,7c.V ,,_.'

I

Internal 22 md
Documen· 120 pp
lation

4 md
2 pp

\"" --;

T
I

Source (included in
Code software)

License 10 md
5 pp Agreement

I

Figure 14.3

Chapter 14 Change and Configuration Management 233

of figures can be extremely useful when we come to consider the impact of a change. Let us
assume that we require an update to the user manual, which will affect some twenty pages.
A small change to the software component of the tutorial is also required, estim:lted at about
10 percent of its current functionality. We could then derive a realistic estimate for the effort
involved in the proposed change as follows:

User manual: 20 pages @ 45/150 mandays = 6 mandays

Tutorial Change: 10% of 30 mandays = 3 mandays

Total change estimate = 9 mandays

Please bear in mind that the above estimate may need to be adjusted for all the usual factors.
We are assuming that the team skills and size are the same, that the same time pressure will
apply, and that the complexity has not changed markedly. A further complication can be that
even a small change to software may require the entire suite to be retested thoroughly. This
can introduce an overhead out of all proportion to the size of the change. This effect can be
countered by the following strategies:

Structured Analysis and Design, or (better still) Object Oriented Design. These have
the effect of localizing functionality so that the effect of changes is constrained to
one very small area of the total system. They also facilitate testing of the independent
modules

Regression testing, whereby all test data is kept in a test bank, together with known
correct results. It is thus possible to rerun all tests automatically with minimal effort

Change Control
Systems tend to be living entities. They are born, they mature, they grow old and eventually
die. Any successful system will typically undergo Significant changes during its lifetime.
The one thing that we can be sure of, is that things will change. What we need to do is to
control the negative effects that change can have, while realizing the benefits that it can
bring. Changes can occur after the product has gone into production, in which case they are
normally seen as maintenance activity, or they can occur while we are busy with the project.
The likelihood of changes occurring during the project is greatly increased in volatile
business environments, if we have not done the early specification phases very well, or if the
project is of long duration. We can thus minimize the amount of change by:

•

•

Using strong analysis and design techniques which elicit all necessary perspectives
(e.g., data, function, technology, user) during the early phases of the project

Using techniques such as prototyping and JAD to achieve high levels of user
involvement in the specification process

Keeping project durations short

Using spiral or simulation Iifecycles such as those discussed in chapter 8, which
allow for progressive refinement as we proceed

Despite the above, we will still encounter a certain amount of unavoidable change. This

234 Managing Information Technology Projects

should be handled in such a way that it does not allow our project to get out of control. In the
following paragraphs, we will explore a suggested change control procedure to minimize
negative effects whilst ensuring minimal delays. This procedure is illustrated in figW'es 14.6
through 14.9. Forms supporting this procedure are shown in figures 14.4 and 14.5.

First, we must distinguish between requests for change and actual changes. The former is a
formal request made by a team member, a user, management or other party. The second is a
change approved by the project manager (or more senior management, depending upon the
impact) that will be carried out by the project team.

CHANGE REQUEST Serial No: 93.123

Originator Date

Project Name Project ID

Description of Change Required (attach fuller description jf necessary) .;:
.~:

:~:

~B __ u_s'_ln_e_s_s_a_r_e_a_s_a_ff_e_c_t_e_d ____________________________ --------~.:: .. : .. ;.: .. :f .. : .. ;

Projects or technical areas affected

Business Impact Assessment (attach fuller description if necessary)

Area ---------------------- Area ------------------

Area -------------------- Area ----------------

~~

~---------------------------~------------------------_i;.!.i Technical Impact Assessment (attach fuller description if necessary)<.

~
~~
~~

Team Team

Team Team

I
Change Request Form Figure 14.4

Chapter 14 Change and Configuration Management 235

CHANGE REQUEST TRACKING

Date Received

Business Impact Complete

~T_e_c_h_n_l_c_a_I_lm_p_a_c_t_c __ o_m_p_le_t_e __ ~S~U~M~M~A~R~Y~----------------------~I

Business Impact ,

~T=e-c~h-n~l-c-a~ll~m-p-a-c~t~--1!

~:~S_.:~::--:-::-:~:~:-:-::'~tl-o-n--~I
. Estimated Completion

i

Estimated Cost

DECISION

Reject Proceed 0 at Priority CJ
Reasons/Remarks

Signature of Change Approver

Work Completed on

Signature of Originator

Change Tracking Form

Refer Back for Info

Figure 14.5

The requested change is documented using a Change Request Form (CRF), shown in figure
14.4, and routed to the project manager (if during development) or the appointed change
controller (usually in the Q.A. area if in production). Each CRF is numbered uniquely to
facilitate tracking. The person receiving the CRF determines the business areas likely to be
affected by the change, and routes a copy of the request to the necessary parties for an
impact assessment. This could involve, for example, Stock Control and Distribution. These
individuals assess the impact that the change will have and return this information to the
project manager or change controller. The technical areas affected by the change are
determined, and a copy of the CRF, with the business impact comments, is routed to the

236 Managing Information Technology Projects

,---, ./ • Log \

Change l~: .. ,:,. • Determine Req .' affected user
. i' areas
'--=c--: .• • Pass on for

assessment

Change Control 1

Close request

Figure 14.6

technical areas, or other affected project teams. They in turn do a technical impact
assessment, and estimate the effort and cost of implementing the change.

If the change can be accommodated without affecting the delivery date or the budget of the
project as committed to management and the sponsor, then the project manager can decide
whether to proceed with it or not. If he authorizes it, then the team or other necessary
resources begin work on incorporating the change. If he decides not to make the change, the
originator of the CRF is informed, and advised of the reasons why the change will not be
made at this time. The originator may accept this, or escalate the request to higher levels of
management. If the originator accepts the reasons why the change will not be made and does
not wish to proceed further, then the change is "closed".

If the change is going to affect the project deadline or budget, the project leader must discuss
this with the project sponsor and I.T. management. A joint decision is then made and docu­
mented. As before, if the change will not proceed, the originator is notified. If the change is
to proceed, the project plan is adjusted to accommodate this, and work commences.

Some organizations put in place authorization levels based upon costs for the various levels
of management. For example, a project manager may have the discretion to accept changes
up to a cost of $10 000 in impact, but would have to refer the change to a Systems Manager
above this figure. The Systems Manager might handle changes up to $25 000 in impact, but
would pass larger amounts on to the Development Manager.

\\'here changes affect multiple project teams, these would automatically escalate to the next
level of management. The CRF would be duplicated to all project managers affected for
their input and comments. These would flow back to the responsible manager. Once all the

Chapter 14 Change and Configuration Management 237

-------"--- -----------------

Close request

~--~ I r--..

Business H',', Technical'
. Assess- ,i Assess- ,

ment ':,L ment '
"'--,-~:=--/' -, -"....--,-

/-'-
i I I. Determine ~'I Tech

Change J f--.i ' affected tech . '. , Tech •...•. Impa., c. tI .. , Req areas ! Team ,I Cost

£=====';-j • fo~~e~~:i~~1 ~@D' Tech. ~.·.,,:-I·T~Ch I.

Impact Assess I Team / '. Impactl '----..
, & resource I • ' ~ '.' Cost I
\. time estImate j

Change Control 2

Business 1 ..
Assess- r

ment

Advise of decision
date, cosl

Close request
.
, (\'
, , Manage- , '
, ment "
, Approval '

\. .. " " '>""'-'='7"""""'-/

Change
Req

1
r. Collate &

, Summarize
•• Determine

,:,.",.'-----=~ 'Appropriate

Change Control 3

Mgmt. Level
• Pass on

"decision
package"

238 Managing Information Technology Projects

Quality
Assurance

ImPlemenJ'
tatlon

Figure 14.7

Implemen­
tation

Figure 14.8

Close request

,.:r;::-:='-:='=T--:" .. •..• Check Impl. Plan
Decision! ~;. Pass on to

Plan . affected technical
r areas ;===::====--"-:':'='2:.c= .. =.h":!.=-... .. ;. Notify requesters

of decision, due
;. date & cost

1+------1 Advise affected
t, external groups

Change Control 4 Figure 14.9

figures were in, the manager could consult with advisers, and then reach a decision. Each
change is also prioritized to indicate its level of urgency relative to other requests.

Two clients we have worked with have adopted similar systems and provided automated e­
mail facilities to support the rapid flow of requests and information. This is very effective,
eliminates delays, and allows those working on the same change request instant access to aJI
the comments made by aJl parties so far.

It is also possible to integrate change management with problem management. The latter is
the processing and resolution of problems which arise in the production environment. Some
of these will result in changes being required for their res 01 uti on, e.g., a software error that is
only discovered under large production loads. Using a single system to handle both
simplitles management and increases responsiveness.

Chapter 14 Change and Configuration Management 239

Case Questions

MyWay Organizer
Your managers have returned from a conference very excited. They have acquired the rights
to use an Internet browser which is written as a fairly small Dynamic Link Library module
and can be embedded into applications. They see an opportunity to give the MyWay
Organizer a strategic advantage in the marketplace by incorporating the browser into the
package in a seamless way. The package allows browsing of the World Wide Web and also
basic receipt and sending of e-mail messages.

014.1
Complete a change request form for the proposal. (10 mins)

014.2
Assess the scope implications referring back to the context diagram and technical
environment models completed in Q2.2 and Q2.3. Comment on the degree (%) of change to
the original specification. (15 mins)

014.3
Your management wants to know if you can incorporate the facility into the product without
missing your end date. They have said they are willing to provide you with two further
resources if necessary. What is your response? (10 mins)

ThoughtWell Books
014.4
The ThoughtWell project is in imminent danger of missing the implementation date due to
communication difficulties with the Branch POS equipment and servers. You have already
reported on the status of the project to the client. It has been suggested that we might phase
the implementation, and only install the system for head office initially, with branches
placing their orders by telephone via a data entry operator at head office. The question now
is: What proportion of effort can be saved if we follow this route, and how will it allow us to
bring forward the implementation date. Determine your answer by revisiting the function
point estimate done in Q7.12. Prepare a motivation to management regarding whether to
phase the project in this way or not. You may suggest other alternatives if you wish.
(1 hour)

240 Managing Information Technology Projects

15Quality
Management

Definition
Ask anyone if they know what quality is, and they will almost certainly say "yes". Ask them
to define it, and they will probably have a lot of difficulty. They will mutter words like
"good", "well made", "durable" and "lasting". Ask them how we can measure quality, and
you may get blank looks. So just what is quality, and how do we measure it?

Ask several people to name a quality watch and you will get replies like "Rolex", "Buren",
"Chris Weill", "Seiko", and even "Casio". Now a Rolex is certainly a quality watch if you
can afford it, and want a watch that will withstand extreme conditions. You could also live
on the proceeds for a month if you pawn it. It has status. A Seiko is a well-made, accurate,
fashionable timepiece at a more affordable price. For many people, this would represent
quality. What about the Casio? If your needs are more a light, practical watch with a stop­
watch for timing sports, cheap enough so that you won't be devastated if you lose it, then it
is certainly a quality watch for you. So quality, like beauty, is in the eye of the beholder. We
might define it as "fitness for purpose" - in other words, an article or product which meets
the user or client requirements. This is exactly how the quality guru Philip Crosby defines
quality:

Quality is confomumce to requirements.

In the I.T. context, systems can have widely varying requirements. Some will have to
process vast volumes with high reliability (e.g., a banking system), some will need to
provide extreme ease of use, regardless of hardware consumption (e.g., an Executive
Information System), while still others will need to be extremely flexible to serve changing
business needs. Some aspects typicalily included in system requirements are:

• Functionality - what must the system be capable of doing?

• Output - what must the system produce?

• Performance - on what level of equipment must the system be able to run, and what
performance should it deliver in this environment? What volumes of data and
transactions or inquiries should the system be capable of handling?

Chapter 15 Quality Management 241

• Reliability - what are the consequences of failure, and how often can this be
tolerated?

Maintainability - how easy should it be to alter the system?

Security - how should access be controlled?

Operability - how easy should the system be to operate?

• Cost - what is affordable to the enterprise?

• Efficiency - how efficient should the system be? What resources can it consume?

• Interoperability - is it necessary for the system to interface with or interact with other
systems?

• Portability - how difficult is it to move the application to another environment?

• Reusability - how easy is it to identify and utilize reusable components of the product
in subsequent projects?

All of the above should be quality goals to a lesser or greater degree, depending upon the
project and the system under consideration.

Measuring Quality
If quality is so individual, how can we measure it? The answer is deceptively simple. If
quality is conformance to requirements, then we can measure the quality of something by the
degree to which is does not meet those requirements. Normally, this can be translated to
money tenns, and is called the Price of nonconformance (PONC).

The measure of quality is the price of nonconformance.

Just what is a non-conformance? It is anything which causes the product (system) not to
perform as desired (as specified in the requirements). In system terms, PONC would
include:

• Cost of rerunning a batch job which aborts because of incorrect data

• Loss of income because of a statement run not going out on time

Effort to locate and correct a bug in production software

• Cost of removal of a virus from a computer, and the cost of restoring data to an
operational state

Damages awarded the client of a medical practice because of incorrect treatment
resulting from incorrect patient history details

• Computer run-time over and above that budgeted for because of an inefficient
system

Obviously, the lower the PONC, the higher the quality. At a quality level of 100 percent, the
price ofnonconfonnance would be O.

242 Managing Information Technology Projects

So Why Worry?
Why should we worry about quality? The answers are very simple. The box shows some ex­
tracts from trade and other journals which give you a feel for the "state of the nation" when it
comes to the LT. industry. With information systems increasingly being deployed in
mission-critical roles, we simply cannot tolerate the low quality levels which we have had in
the past. One commonly heard quote is "If we built buildings like we build software, the first
woodpecker to come along would destroy civilization". We tolerate a cost of nonconfor­
mance in our industry which is greater than 60 percent. In most industries, it is regarded as
unacceptable if the figure exceeds 1.5 percent.

The State of Affairs

It seems dBase IV has done poorly because its 450,000 lines of code
contain as many as 100 bugs, say outside developers. Ashton-Tate says
the glitches number 44. Still, the flaws make functions such as file sorting
worthless. "This program is nothing but a stick-up", says Denis Bellemare,
a Montreal immigration lawyer and dBase IV buyer. "It's so bug-ridden I
can't use it".

Business Week July 17, 1989

In 1981, a 1/30 second timing difference caused by a program change
created a 1/67 chance of the space shuttle's five on-board computers not
synchronizing. This was not detected during thousands of hours of testing,
but caused a launch abort on the pad.

Paraphrased from Design News Feb 1988

In 1986 a Therac 25 machine administered allegedly fatal doses of
radiation to two patients after a software problem caused the machine to
ignore calibration data.

Paraphrased from Datamation May 1987

A software error was partly to blame for the information leading to the
decision of a US aircraft carrier captain to fire upon a civilian airliner in the
Gulf.

Newsweek story

Consider figure 15.1 which details software spoilage, derived from work by Tom De Marco.
Similar figures were obtained by the IEEE. We are all aware that over 60 percent of effort in
the average large installation is devoted to "maintenance" activity. We should also be aware
that around 50 percent of the development costs are typically expended in testing and
debugging software. Now we realize that some of the maintenance is to add new features
and facilities, or to respond to changing business requirements. We also realize that we will
have to spend some effort in testing, regardless of how good our product is. However, if we
count only the proportion of effort spent on maintenance which is not adding new
functionality, but fixing errors, and the portion of avoidable test/debug effort, we arrive at a

Chapter 15 Quality Management 243

software spoilage figure of 55 percent. This represents the proportion of effort which is not
delivering any business benefit - it is totally wasted. With the high cost and scarcity of good
LT. skills, this is surely unforgivable, especially when we look at the growing application
backlogs which most organizations face.

Spoilage

Adapted from DeMarco, 1982.

Software Spoilage Figure 15.1

The situation in most organizations, viewed from the perspective of senior management, is
illustrated in figure 15.2. Despite the declining cost of hardware power, and the vast
computing and storage capacities we are able to purchase at relatively small cost, the overall
LT. budget keeps increasing. The money goes into people and software-related activities.
Approximately 60 to 70 percent of this is spent on maintenance and avoidable effort in the
testing phase. This leaves about 30 to 40 percent available for delivering new functionality
to the organization. In many mature shops, this is much worse and falls around the 20
percent mark. There is also a striking correlation between the length of time an organization
has been computerized and this number. The more development we do over time with poor
quality, the more burden we place on the maintenance activity, further reducing our ability
to do new things. If this is allowed to continue, eventually we will spend all our time fixing
things, and never produce anything new. Small wonder then that the backlog in some large
shops is estimated to be 5 to 7 years of work for the entire systems department. At 30
percent of their capacity, this will take 15 to 25 years. Clearly, by the time the systems
department gets around to some applications, the organization probably does not want them
any more. The organization may even be out of business because it could not respond to a
competitive thrust, or to comply with new legislation or circumstances. From a business
perspective the situation is untenable: we keep paying more and more for less and less. It is
not surprising that many organizations are outsourcing their LT. needs.

How cun we turn this situation around? The answer lies in doing things properly. We
frequently see client organizations which never have time to do it right, but always have
time to do it again. One company we are familiar with is embarking on the third attempt at a
key business system. This process has lasted five years, and cost tens of millions. They still

DeMarco. Tom. CootroUing Software Projects. e 1982. p. 198. Reprinted by penniss;oo of Prentice Hall. Upper Saddle River. New Jersey.

244 Managing Information Technology Projects

Maintenance & Spoilage

Time

Ability to Deliver New Functionality Figure 15.2

do not have a solution. When we suggested some 4 years ago that they should take a short
break to review their methods, establish standards, do some training and design the
infrastructure carefully, we were told. "Forget it, we don't have time!"

If we can create a culture and set of capabilities that does do things right, preferably the fIrst
time, then we can turn the situation around. This is a long-term view and requires the
support of senior management. Referring to fIgure 15.3, this scenario works as follows: We
initially spend some money and time to educate our people about the quality philosophy.
This impacts short-term productivity. Next, we begin using the best techniques and methods
we can fInd, with the express purpose of delivering the highest quality possible. As we
improve the quality level of our output, we will fInd that the spoilage component declines,
releasing more productive resources. Gradually, over a period of several years, we can
reverse the situation to where maintenance and spoilage are a small component of our

Culture Change Totall.T. Budget

Maintenance & Spoilage

Time (probably several years)

Turning Productivity Around Figure 15.3

Chapter 15 Quality Management 245

workload, and we have great ability to add value to the business. If you are skeptical, stop
ten people at random and ask them which country is a quality leader in electronic goods.
Most will say Japan. Now stop ten other people and ask them which country has the highest
productivity per capita. Again, most will say Japan. How can it be that they are both quality
and productivity leaders? As we will see shortly, quality is the key to high levels of
productivity.

Quality Management
Quality Management is a total approach (also called Total Quality Management [TQM])
embracing the necessary things to achieve quality at every leveL It is a common myth that
quality is the responsibility of the "workers". Quality is the responsibility of management.
Total quality is the responsibility of senior management. There are three main components:
Quality Environment, Quality Assurance (QA) and Quality Control (QC).

Quality Environment
A quality environment includes the organization's approach to quality - its culture and the
infrastructure provided to support the achievement of high quality. Consider figure 15.4. It is
the responsibility of senior management to create a quality-enabling environment, and to
inculcate a quality-conscious culture. Unfortunately, this is more difficult than it sounds.
There are many organizations where management pays lip service to quality, but demands
unrealistic deadlines from staff with inadequate training or tools. This is a sham. True
quality culture is created by example. When employees see senior managers behaving in a
way consistent with the total quality philosophy, then they too will feel free to behave in this

Quality Management Quality Assurance
• Training Time • Balance Bar
• Best Equipment • Right Shoes
• Equipment Maintenance • Personal Training
• Culture • Fitness

•

•..•••.• 1
c K·········· '-. /,,!.

¥,,>-~ \7 , -._" _c_,_,. ___ " - . ,

Quality Control
• Prevents a mess if we slip

Quality-Team Effort Figure 15.4

246 Managing Information Technology Projects

way. It extends to things like providing a quality working environment, integrity and
honesty in dealings with staff, measuring results not busy time, adhering to standards,
establishing the quality expectations, funding the creation of measurement and monitoring
programs, and training the entire organization in the requisite concepts and techniques.

We need to be very careful here. There are organizations we know which have a formal
quality policy, plaques on the wall, graphs of performance, a Quality newsletter, and a
training program, but still, when the chips are down, decide to breach the principles when
making project decisions. They will put a system into operation because of user pressure,
even though they know full well that it has not been performance or reliability tested, for
example. There are others who have no fanfare, no formal program, but where quality is
evident in everything that managers and workers do. Formality is a necessary evil when we
need to change the culture of a large organization. The point we are making is that, to work,
the commitment must be real. Token adoption of quality programs will yield token results.
The follow-through is all important. The General Manager (LT.) of a large insurance
company we know tells the story of how he knew the quality improvement program was
working when a junior team member, requested to implement an untested change to a
production system by a board member, had the gumption (and presumably the faith in his
management) to say, "We don't do things that way here."

To sum up, the actions management must take to launch a quality program include:

Publicly declare the philosophy, and the corporate commitment to it

• Implement company-wide training in the concepts and principles involved

• Set up a measurement program to establish the current quality level

• Identify problem areas, look for solutions which will prevent recurrence of problems
and implement them

Keep monitoring to see if the solutions are indeed improving the quality level

• Ensure that staff at all levels, and suppliers, are involved

• Involve internal and external clients in requirements definition

• Set an example

• Keep doing it

Quality Assurance
Quality assurance is the second major component, and is the responsibility of middle
management. It includes everything which we do to ensure that things are done right the first
time, including:

• Development of standards

• Training in techniques and tools

• Use of proven methods with defined deliverables

Chapter 15 Quality Management 247

• Provision of tools to assist in proper performance of tasks

• Assignment of correct skills to tasks

Prevention activity - finding the root causes of errors and eliminating them

Quality Control
Quality Control is the final safety net. It is the last line of defense. Its purpose is to catch the
odd nonconformance that occurs despite QA before it goes out the door and is seen by the
client. Quality control detects errors; it does not correct them. Correction should be per­
formed by the people responsible for producing the product. Quality control is an operation­
allevel activity. QC includes activities such as:

Inspections

• Testing

Ideally, we want the people performing QC to find nothing to report. Achieving quality is a
team effort: Management must establish the culture and infrastructure to allow high quality;
Project Managers must do everything in a way that assures quality is built in, and Inspectors
must ensure that if we slip up, that this (rare) fault does not reach the client.

Note that in terms of the project lifecycle, what is a QC activity for one phase may be seen
as QA for the next. For example, we may inspect the requirements document. This is a
quality control on this deliverable. At the same time, this is preventing poor input to the
design phase, thus assuring quality there. Elsewhere in the book we have seen the relative
cost of errors, depending upon where they are discovered in the lifecycle. It thus makes
sense to have frequent QC/QA activities early on in the Iifecycle. These will increase the
proportion of effort expended on these phases of the lifecycle, but the overall project effort
will be greatly reduced. In work which we have done in productivity analysis with clients,
we have seen a strong relationship between those using good methodologies which
emphasize requirements analysis and design, and high delivery rates. Those who have a high
proportion of Iifecycle time spent in the early phases are very likely to be the ones who
demonstrate the highest overall productivity.

Total Quality Costs
From the foregoing, we can see that the total expenditure on quality will not only be the
price of nonconformance, but also the cost of the training, culture change and assurance
activities. Thus the total quality costs are defined to include PONC and the Price of
Conformance (POC). POC includes cost of:

peer walkthroughs

• inspections

• developing and implementing standards

• training in quality philosophy

setting up and running a quality measurement program

248 Managing Information Technology Projects

The cost of quality (COQ) = Price of Conformance (POC) +
Price of Nonconformance (PONC)

An obvious goal is that the COQ must be less than the value of the benefits achieved by the
quality program over a period of time.

Two Philosophies
Early ideas about quality centered on an approach where finished products were inspected,
and defective ones were sent back into production for repair (so-called rework) or discarded
(known as scrap). This is the appraisal school of thought, depicted in figure 15.5. Adherents
to this approach believed that there was an economic level of quality. This would be a point
where the total cost of quality would be at a minimum, and that this would occur somewhere
below 100 percent quality leveL The thinking was that to achieve very high quality levels,
you would have to increase testing and inspection to find all the faults, and that you would
incur increasing costs of rework or scrap to correct the problems. While this is intuitively
appealing, it has been proven incorrect. The problem lies with the assumption that we must
continually correct products with the same fault, thus incurring the rework expense over and
over again. This should not be necessary if we follow a different approach, known as the
prevention approach.

iii o
(.)

0%

Quality-Appraisal Philosophy

A Quality Scenario

Economic
, Quality
, Level

,
COQ ,

Quality Level

POC

PONC

100%

Figure 15.5

During system testing, a 4GL reporting program is found which performs very poorly. It is
producing correct results, but accessing the database in a very inefficient way. We could
just fix the problem and continue testing the rest of the system. What we do under the
prevention philosophy is this:

Chapter 15 Quality Management 249

• Correct the program and continue with testing

Look for other programs exhibiting the same problem

• Correct the unit testing procedure which allowed the problem to get this far

• Discuss the problem with the responsible programmer to determine why the program
was designed in that fashion

(We discover that the programmer believed that it was the correct way, based upon
knowledge gained from a language course given by the 4GL vendor)

• Advise all our 4GL programmers of the correct way to tackle the problem

• Liaise with the vendor and get the training course fixed

This seems like an awful lot of trouble to go to because of one poor performing program. It
is. The secret lies in the fact that we are tracking down and fixing the root cause of the

problem once and for all. We should never encounter exactly the same problem again.
Contrast this with the appraisal approach where we would continue to find similar programs,
and fix each one in turn. We can sum it up like this:

• In appraisal, the effort to correct the problem is small, but this will be repeated many
times in the future

• In prevention, the initial effort is high, but we will not repeat this effort

The prevention approach thus changes the relationship between POC and PONe. The COQ
will not be at a minimum below 100 percent, but at 100 percent, as shown in figure 15.6. In
appraisal, expenditure continues to rise as we approach a quality level of 100 percent. In
prevention, the rate of expenditure on quality is controllable. It will affect the rate at which
quality improves, not whether it does. It is also independent of the number of products being
produced. The key is that we cure problems once at source, and this expenditure is never
repeated. This leads us to declare two important principles:

10
o
(J

0%

Quality-Prevention Philosophy

Quality Level

250 Managing Information Technology Projects

100%

Figure 15.6

The system of quality is prevention.

The quality standard is zero defects.

The latter is often a contentious statement. People think that we are talking about perfection,
and argue that this is not attainable. This is not what zero defects means. It means no devia­
tion from requirements. The requirements might state something like: "There should be no
more than one hour of downtime per month". If the system has 20 minutes downtime per
month, then it is performing at a zero defects level - it has met or exceeded the specification.

A Quality Model
A useful way to think about everything we do from a quality perspective is as a process with
inputs and outputs as in figure 15.7. Inputs come from suppliers, which may be internal or
external. Examples include a systems analyst providing a data model (internal), or a vendor
providing a user manual (external). Outputs go to clients, internal and external. An internal
client might be a designer who will use the specification we have created. An external client
might be the ultimate recipient of a software product and its documentation where we are a
software house. The requirements for the deliverables from our process come from our
clients. We must ensure that the outputs we produce conform to their requirements. This
means that we must know what good quality output looks like. We must know the content,
the format, and the timing constraints, etc., that our client dictates. Good methodologies
assist greatly here by identifying what form deliverables should take. We also need to
understand the process, techniques and tools that we will use to produce the required output.
This too is the province of good methods, assisted with tools to automate the process, and
training to know how to use both.

We need good inputs to produce good outputs. If I am a designer expected to produce good
file structures, I will need a data model as input. If this is erroneous, my output will be too.
There are thus requirements that I will have of my supplier. The data model should be
complete, in a recognizable form, include volume information, and indicate how data groups

Quality Model Figure 15.7

Chapter 15 Quality Management 251

will be accessed. It must also include the detail of data item types and sizes. Without this
information, I cannot produce a good design. I should ensure that my suppliers are made
aware of what constitutes good quality from my perspective.

Obviously, with the SDLC and PLC, there will be long chains of activities and associated
deliverables. A competent methodology will have specifications for the tasks and the
deliverables. Where these are lacking for your particular project, they should be created at
the outset when you design your project.

Figure 15.8 shows what the model looks like to describe the file design process we have
mentioned. Having a comprehensive model in place, coupled with the concept of statistical
process control described in the preceding chapter on measurement, allows us to continually
improve quality.

Quality Model for File Design

File DeSign

Translate tables
to available
file structures

Ensure all
access req.
catered for

Validate
performance

Calculate
File Sizes

252 Managing Information Technology Projects

File DeSign

File Names
File Org.
Keys
Rec Sizes
Volumes
File Sizes
Index Sizes
Security
Backup Cycle

Figure 15.8

Innovation versus Kaizen
Many will argue that these techniques work only in certain cultures, e.g., the Japanese
culture where organizations and employees have very high loyalty, often extending to
lifetime commitment to each other. It is interesting to reflect that virtually all the quality
techniques that we attribute to Japan were frrst described in the United States. The Japanese
just took them more seriously. There are two major ways of achieving improved processes
and better quality output. The first is innovation. This is the favored approach in Western
culture. It relies on adoption of new techniques or breakthrough technologies which
radically change the way in which the task is approoached. An example would be the use of
a code generator instead of manual writing of code. Innovation is attractive because it can
offer order-of-magnitude improvements, and apparently does not require that much effort or
discipline from the adopter. This, of course, is deceptive. There is significant effort involved
in learning how to use the new technology and adapting all the surrounding processes. It is
also risky, since there is usually no guarantee that the new approach will work. Indeed, the
history of the I.T. industry is full of examples that promised much, but have not delivered in
the vast majority of cases, e.g., 4GL's, CASE. Innovation can be used to very good effect,
though, if we are currently at very low quality levels (as most installations are) because we
are simply not using the best "state of the practice" techniques which are proven to work. In
this case it is an innovation for us, but has relatively low risk because it is proven elsewhere.
Examples in this category might include the use of prototyping, user involvement in the
lifecycle, and using query tools for ad-hoc requests.

Far harder to sell to the Western mind, but extremely popular in Japan, is the concept of
continuous, small improvements, or kaizen. This relies on experience with the task, and
actively looking for opportunities to do it just that little bit better the next time. It relies
heavily on worker participation and detailed knowledge of the tasks performed. Quality
circles are one way of facilitating and promoting the approach. Kaizen dovetails with the
statistical process control approach previously covered.

There is disagreement as to whether the Japanese management techniques can work in
Western organizations. The American automobile industry was seriously threatened in their
local markets by Japanese competition. The major automakers sought refuge in government
restrictions on imports, instead of looking at their product quality. The Japanese response
was to set up plants in the United States. These used Japanese management and quality
approaches, but relied exclusively on American workers. The result was that these plants
now dominate the domestic American market. American workers responded very well to the
approach, and often added their own tendency to innovation as a bonus.

The conclusion we can draw from the above is that both approaches are useful. Innovation
tends to be unpredictable, risky and disruptive, but it can yield spectacular results. It is best
employed where quality levels are still fairly low, or in a controlled way in a stable
environment. Kaizen is slow, predictable, nondisruptive, but yields steady improvements. It
is best used at high quality levels where no easy gains are available. It relies heavily on
worker participation, communication and a disciplined approach to work. The last of these is
probably the reason we use it so seldom.

If hindsight is the only exact science, why are we so sparing with it?

In the next sections we will examine ways to improve our quality levels.

Chapter 15 Quality Management 253

Quality Improvement
There are a number of things that we can do to improve the quality of our work, products
and services. They include:

Well-defined lifecycle. Only when we have a lifecycle which is understood and under
control can we be in a position to measure our performance on an ongoing basis, and
to implement on a wide basis those changes which really yield benefits. We
frequently rush in and make wholesale changes based upon no sound facts whatever.
A defined li fecycle also facilitates the accurate definition of deliverables and
standards for these. In addition, we build examples of good work and skills in our
team members

Tasks associated with well-defined deliverables. It is insufficient to define only the
tasks. We must also understand the products and deliverables that are to be produced.
These should be specified in detail in terms of both content and presentation

Quality standards for each deliverable. Each deliverable should have an associated
quality standard. This can be brief, but should be enough to ensure that we can
evaluate a deliverable and see whether it meets requirements

• Informal walkthru's should be encouraged. These encourage people to make what
they do visible. If I have to show my work to my colleagues, I am far more likely to
check that it is rigorous. It is also frequently true that we find our own errors when
we start to explain how we have done something to somebody else. Teachers are
familiar with the phenomenon that you think you understand something until you
have to explain it to someone else

•

•

•

•

254

Formal walkthru's have similar benefits to informal ones, but are more resource
hungry. They should be saved for critical deliverables, or review points

Code inspections. These seem rather old-fashioned, and are criticized for being ex­
pensive and time consuming. However, Yourdon has shown that organizations using
this technique alone improved productivity by 38 percent. How is that for innova­
tion? Work by Jones shows that they can remove up to 85 percent of all code defects
without testing being done. If we relate this to the amount of effort expended on test­
ing, maybe we should dispense with testing and just have inspections?

Reviews and audits of deliverables as we have built into our lifecycle, are
fundamental to catch errors early and prevent them escalating in later phases of the
lifecycle. A $10 error caught at the requirements phase can save $10 000 down the
line. Reviews should be formal and documented. Time must be scheduled into plans
to respond to the issues they raise

Defect seeding, as discussed by Tom Gilb, is an interesting approach to determining
if our testing and defect removal process is working. The idea is that we knowingly
introduce some errors to code before the testing process. We then see if the testing
finds these errors. In large software products, the technique can give us valuable
feedback on the effectiveness of our testing and correction procedures

Rewards for Quality. The old management maxims apply: You get what you
measure and what you reward people for. If we want quality, and quality improves
productivity, and this saves money, then we can reward the people who deliver
quality. Rewards do not necessarily need to be financial, although they can be. As we
will see later, LT. personnel are frequently motivated by other factors. The reward
could be sending the person on a seminar they would like to attend, buying them a

Managing Information Technology Projects

book they have been coveting, or giving them an upgrade for their Pc. Key factors
are to make it public, and make the selection of recipients fair - this requires clear
policy and guidelines, as well as objectives and measurement criteria

The imponance of training and mentoring cannot be stressed too highly. Many shops
we see are in the mode of "we can't stop to sharpen the axe, we're too busy trying to
chop trees." Cutting training may save you schedule time and money in the short
term. In the long term it will cost you productivity, motivation, and ultimately your
best performers. Training need not necessarily be formal, but it should definitely be
an objective and receive priority. Don't forget mentoring, which is much neglected,
but vital. Many subtle skills can only be transferred effectively in this way. A course
may be great to learn about the latest release of software, but this will not teach the
new analyst how to handle a particularly tricky user in group sessions

Separation of duties. In the financial world we have the concept of joint signatories.
In auditing practice, we make sure that the person who draws the check is not the
same person who signs it. In systems, we let the same people who wrote systems
take them live. This allows shoddiness where we mentally say to ourselves, "I know
that the calculation routine is a bit slow, and that the print routine really isn't tested
thoroughly, but the users want it now and I can fix it later." Of course, we never do
get around to fixing it before it fails in production. This attitude is also a major cause
of poor documentation. Writing documentation is never fun. If the only person we
are writing it for is ourselves, we are hardly likely to be very motivated. All systems
and changes, before going into production, should be formally accepted by the
personnel who will run them (operations) and the team that will maintain them. The
latter should be separate from the development group. This will ensure that this
group will not accept anything from the developers unless they can prove that they
have done a thorough job. The accepters must not fix any errors, though, or this will
encourage developers to use them as a quality assurance resource.

We will expand on several of these in the following sections.

Bugs or Defects?
The first "bug" was reportedly discovered by Admiral Grace Hopper of the U.S. Navy,
working on an early machine using electromechanical relays. The machine had displayed a
puzzling fault which was traced to a moth jammed in a relay. This was removed and taped
into the log book with the message "I found the fault, it was a bug," or something similar.
This was a real bug, and it crept in there all by itself. However, ours are not real bugs, and
they don't get there by themselves: we put them there. They are also very costly. De Marco
estimated the cost of software defects, as we will call them from now on, at $7.5 billion in
1982. Bugs are cute, defects aren't.

We should not call them bugs, since this removes the responsibility from the creators. We
should refer to them as defects, which is what they are. A defect is a deviation between
desired and observed results. We are often told that it is beyond human ability and the state­
of-the-art to produce software without defects. De Marco tells a lovely story about an
engineer who wrote his first system after teaching himself to program. The system ran
without any hiccough for many years, and no faults were ever found. When asked how he
had managed to do it, the engineer replied, "I didn't know that errors were allowed." We
should be more like him.

Chapter 15 Quality Management 255

The vast differences in ability we discussed with respect to productivity of developers
extend to their ability to produce error-free code, and their ability to find and remove errors.
We can expect an order of magnitude difference between our best and worst performers as
highlighted in figure 15.9.

Expect an order of magnitude difference between
best and worst in a team of ten

Defect
Detection
Rate

Defect
Removal
Efficiency

Defect
-~--- Responsibility

Worst
Programmers

Source: De Marco

Differences Between Developers Figure 15.9

Start Testing Early
It is a common fallacy that we can only test when the first programs are complete. Nonsense.
We can test the moment the first deliverable is produced. We can test a project plan for the
reasonableness of its assumptions, to see if leave and training have been included, and to
make sure that resources are not routinely overloaded. We can test a functional model to see
if all the necessary data to support it is in the data model. We can test a user document to see
if it is comprehensible, and that the readability level is not too poor. How? Just present it to
your peers for a start!

Adversary Teams
We have mentioned the problem of not having a formal hand-over procedure, and the need
to introduce separation of duties. One extreme way to do this is to have a testing team whose
job it is to try to make the product produced by the developers fail. An example of this was
the notorious "Black Team" at IBM. They were started as a normal testing group, but
quickly took it upon themselves to develop a "mean" image. They started dressing in black,
and delighted in breaking code submitted to them for acceptance testing. It became a
challenge, of course, for the developers to see if they could beat the Black Team, and their
quality shot up. Members were rotated through the team so that it didn't become a personal
issue between individuals.

256 Managing Information Technology Projects

Looking at it more generally, and considering figure 15.10, construction teams should
produce their work and submit it to the testing team for acceptance. Both construction and
test teams have a copy of the requirements specification. The test team will try to find any
defects they can. They then return their diagnosis and comments to the construction team.

Requirements

The IBM Black Team

Adversary Teams

Measurement Team
Forecasts

---1 & Analyses

Figure 15.10

The construction team makes the necessary repairs, and resubmits the product. When the test
team is satisfied, the product is accepted for implementation. A separate measurement team
maintains information about the software development process. The construction team will
provide them with measurements of application size, effort expended, etc. The test team will
provide the metrics team with information regarding product quality. The measurement team
will build up a database of information. This is useful in monitoring productivity and
quality, and in assisting with estimating and process improvement.

Myers's Findings
In his research into the defect density of code in large systems, Myers found a relationship
that shows that the likelihood of finding errors in a portion of code is proportional to the
number already found there. See figure 15.11. Simply stated, those areas where early tests
locate defects will probably continue to produce more defects with further testing. Those
where early tests show no or few defects will tend to exhibit this behavior during continued
testing. This is termed the "cockroach theory". If you see one cockroach in a kitchen, it is
unlikely to be the only one in the place. There is probably a nest somewhere. If conditions
are right for one, there will be more. A practical application of this is in assessing modules
for maintainability. If we analyze the defect density of a total system on a module-by­
module or subsystem-by-subsystem basis, we can identify those areas with high defect den­
sities, and those which are relatively defect free. An analysis ofIBM's IMS database system
in this way localized 57 percent of errors to just 7.3 percent of modules. We can then decide
whether we can fix these by a restructuring or inspection process, or whether they should be

Chapter 15 Quality Management 257

Errors already found

Myer's Findings

'The probability of the existence of
more errors in a section of a program
is proportional to the number of errors
already found in that section"

• IMS - 57% defects in 7.3% of modules

• Defects' presence is not consistent

• Cockroach theory
- Kill the nest

Figure 15.11

rewritten. This approach can greatly reduce maintenance effort, and simultaneously increase
quality significantly.

Monitoring Defect Removal
Having found defects, we need to remove these. In doing this, we run the risk of introducing
new defects. We need to track the number of defects found and the number corrected. These
should produce a graph with a characteristic shape, as shown in figure 15.12. This indicates
that defect discovery proceeds up to a point, and then levels off. Defects corrected should
climb to meet this line. After this, no more defects should be discovered. If the number of
defects discovered plateaus and then rises, this is indicative of problems in the correction
process· it is introducing new problems.

Monitoring Defect Removal

---- -""
......

'" '" '"

Time

258 Managing Information Technology Projects

/'

I
I

;
/' Defects Corrected

Figure 15. 12

It can also be useful to put a band on the graph to indicate the nonnal range for defects in
products of similar size to the current one. This should have one standard deviation either
side of the mean. If our product falls outside these ranges, we should be wary. If defects are
very high. then we should review our production process. If defects are unusually low
(below the band), it may be that we have really got the development process producing very
high quality. On the other hand, it is far more likely that our testing process is at fault and
that we are not finding all the defects present. Of course, over time, the defect rates should
fall and the mean and thus the "normal" band will move downward.

Problem Incidence as Reliability Indicator
Once systems are in production, it is useful to monitor their production performance. This
can include aspects of performance and reliability. Performance can be monitored in terms
of batch run times, and response times. Any nonlinear increase could be an indicator of
impending capacity problems, or a need to reorganize files.

Reliability is normally measured in number of incidents per unit time. An incident is any
occurrence in the production environment which requires corrective action. It could be a
program "abend", incorrect figures on a report or a corrupt record on the database. These
may be documented using Problem Incident Report (PIR) forms. Monitoring the PIRs for a
system over an extended period will give us an indication of its reliability, and the quality of
the maintenance being performed on it. See figure 15.13. A system which is improving in

PIR = Problems Incidence Report
KSLOC = Thousand Source Lines of Code

Months

Problem Incidence as Reliability Indicator Figure 15.13

quality will have a downward trend in PIRs, one being maintained badly, an upward trend.
We need to balance these with usage patterns, e.g., an increase in PIRs may be experienced
when new facilities are exploited in production. Normally we will use a simple regression to
assist us in seeing the overall trend, as opposed to the valleys and peaks. To normalize them
for system size, we might express the trend in PIRs per 1 000 function points, or some
similar measure.

Chapter 15 Quality Management 259

The Productivity Link
If we do it right. what can we achieve? We would like to cite two examples. The first is
Hitachi Software in Japan. This is a very large software house producing system software.
They ran a quality improvement program over some 4 years. The results are astounding,
given the figures we have presented earlier in the chapter. Hitachi were unhappy with its
PONC, measured as a cost of fixing any defect in software delivered to clients as a
proportion of revenue. The company began its program with the figure at 1,48 percent! By
the time the progress was reported, this had been reduced to a figure of just 0.08 percent as
shown in figure 15.14.

2,0

1.5

1.0

0.5

Aggregate Spoilage x 100

Aggregate Project Cost

1.48

1976
3-40

1977
1-20 3-40

Quality Improvement at Hitachi

1978
1-20 3-40

0.16

1979
1-20

0,08

3-40

Source: IEEE

Figure 15. 14

An American example comes from Computer Sciences Corporation, an aerospace contractor
which builds complex software for embedded systems in missiles, spacecraft and airliners.
The company mounted a program to improve quality. They used statistical process control
concepts as we have outlined. Over a period of some four years, they were able to reduce the
error delivery to less than half of the previous norms as shown in figure 15.15. An amazing
byproduct that they had not counted on was a threefold increase in productivity. These
results support our earlier contentions that the major problems and challenges which we face
are managerial, rather than technical. If a vendor were to offer us those sort of benefits from
some brand new gizmo. we would buy it today. Similar results are available to us if we take
the trouble to learn the concepts, plan a suitable strategy for our organizations, and stick to
making it work.

Reusability
One way to achieve high quality and productivity, available since the inception of
computing, but which is only now beginning to be widely exploited is reuse. If we can
create functional, modular, high-quality software components, then we can reuse them in the
same way that hardware engineers use integrated circuits in a variety of devices. An example

260 Managing Information Technology Projects

• Computer Sciences Corporation

• Six Projects - 2.7 Million lines of code

• Card, Clark and Berg, 1987

2.0

B

O~-'1~9~83~~1~9~84~i~1~9785~~1~19~8~6~~11798~7~ 1983.1 1984 1985 I

Year of Pertormance Year of Delivery

Process Improvement Results Figure 15. 15

would be a timer chip which could be used in a digital watch, an alarm clock, a VCR, and a
personal computer. The application is different each time, but the designer of each device
can use the standard component in each case. All we have to worry about is what
connections it needs, what signals it accepts and what it will give back. We can design
software in the same way. One good example of this over the years has been the Fortran
scientific function libraries. These items of code have been reused by millions of developers
in widely varying applications.

Until recently, developing reusable code required very high skills and was technically
difficult, mainly due to lack of tool support. With the advent of object oriented techniques
and development tools, we should see reuse becoming common. The advantages are great. If
we do not have to design, code and test a module, the savings are enormous. If the module
has been used by thousands of other developers before us it is likely to be extremely reliable.
If it is highly used, the developer can take the trouble to optimize its performance -
something we could not justify for our single application. The benefits for quality and
productivity are apparent. Already large class libraries for technical environments (e.g.,
WindowsT~, Presentation ManagerT~, Motif"M user interfaces) and application areas are being

Chapter 15 Quality Management 261

marketed. We may finally see improvements in productivity of software development on a
par with what the hardware engineers have delivered.

We should make reusability part of our strategy and reward developers for producing
reusable components and for using existing components. It is vital that these components be
of the highest quality if we are to reap the benefits, so careful attention must be paid to
quality throughout the development process.

262 Managing Information Technology Projects

Case Questions

MyWay Organizer
Q15.1

Below is the Entity Model developed for the MyWay Organizer. Using the criteria
given in chapter 4 for this type of deliverable, critique the model. (20 mins)

USERS ~DRESS Hi I---(-j~ PERSON

i

I

H i TOD01TEM
!

'f
I

YEAR 1 MONTH 4 __ D_A_Y_-J

Q1S.2

Using work breakdown and network planning techniques, devise a detailed plan for
the testing of the MyWay organizer product. Include reviews and other QA activity in
your plan. (20 mins.)

Q1S.3

Using the Quality Model presented in this chapter, develop a description of the
process, suppliers, clients and criteria for the task "Cross Platfonn Test" in the
Organizer project. (20 mins)

Chapter 15 Quality Management 263

Handover Trust
015.4

Mr. Renfrew has asked you to propose an organization structure and job description
for a quality assurance function within Information Systems at Handover Trust.
Remember that this function will need to establish standards, provide assistance in
achieving quality results to a variety of project teams, conduct walkthroughs and
quality audits, and mount other activities to ensure that quality does improve. Detail
in your proposal:

• Your proposed organization structure (show relationships of the function to other
groups and projects)

• Draft a mission statement for the function
• List the five most important objectives for the function
• What do you recommend as the first order of business to which such a function

should apply itself?
(40 mins)

015.5

A standard project plan has been suggested as the basis for planning parallel projects
undertaken in future. You are asked to critique the structure of the plan with particular
reference to quality assurance and configuration management. Amend the plan where
necessary.
(30 mins)

Indentation is indicative of work breakdown hierarchy:

Feasibility Phase
Justify Economics
Consider Technical Options

Specify Requirements
Model Data

Collect Documentation
Analyze Data
Draw Entity Model

Examine Existing System
Interview Users
Draw Data Flow Diagrams

264 Managing Infromation Technology Projects

Define Logical System
Develop Logical DFD's
Design Reports

Design User Dialogues
Design Online Screens

Design System
Database Design

Normalize Data
Draw Relational Model
Add Physical Access Requirements
Calculate Sizing
Specify Physical Schemas

Map Functions to Modules
Define System Interfaces
Program Design

Define Program Requirements
Determine Access Maps
Design Algorithms

Design Batch Flows

Write System

Specify Batch Process
Define Job Control

Code Programs
Test Programs

Parallel Test with Old System
Prepare Data
Move Software to Production
Run Test
Verify Results

Take System Live

ThoughtWell Books

Q15.6

Consider how you might implement a version of the "adversary team" quality
assurance approach in the ThoughtWell Books situation. Could you make use of
client personnel? What are the advantages and disadvantages that you foresee? (30
mins)

Chapter 15 Quality Management 265

This page intentionally left blank.

16
The Need for Documentation

Project
Documentation

There is ample evidence to indicate that between 60 and 70 percent of the effort expended
on systems projects occurs after the implementation of the system, i.e., in the maintenance
phase - recall our discussion of the Putnam-Norden model. Some of this is adaptive main­
tenance to meet changing requirements, some is corrective maintenance to fix defects, and
some is perfective maintenance to fine-tune the system in production. Regardless of which
type of maintenance we are to perform, good, accurate, up-to-date documentation of the sys­
tem is essential if we are to be efficient. It is also vital to ensure that our changes do not in­
troduce unanticipated problems. Good documentation is vital to realize the full return on
investment from a system. Documentation should thus be a major component of the product
which our project sets out to deliver.

The Traditional Trap
Producing documentation is a lot of work. It is normally not a job that creative systems
people enjoy; consequently, it is avoided like the plague. It is normally tucked away
somewhere at the end of the project plan, and assigned to the most junior resource, who
can't protest too much. Of course, this person knows the rationale behind the system inside
out and is an expert communicator and technical writer, so we won't have any problems, or
will we? We frequently find that this isolated task of "document the system" is planned to
occur in parallel with integration testing, and preparation of the production environment.
Teams are under enormous pressure at this time, and, you guessed it, the documentation
suffers. We would feel a supplier of electronic goods was negligent if we were sold a
product that could not be fixed by technicians because there were no schematic diagrams,
yet we frequently leave our own users in exactly this position.

As we have pointed out, good documentation is vital to realizing the benefits and potential
of a system over the long term. This means that it should be done by competent, senior
people. But how do we persuade them to do it?

Painless Documentation
The most painless way to produce documentation is in small, manageable chunks. How do
you eat an elephant? One bite at a time! Secondly, we should not see documentation as a

Chapter 16 Project Documentation 267

separate task - it should be spread evenly throughout the project, and spread over several
team members. It should be a painless byproduct of the activities we normally perform, not
something discrete. To achieve these aims, we can:

• Use automation in the form of CASE tools, and other much simpler tools, such as
word processors, graphics packages, data dictionaries and so on. This takes the sting
out of documenting for technical people. It gives them some technology to play with,
which they like. It also makes revisions much less labor intensive, and therefore
documentation tends to stay much more current. (Have you ever had to redraw a 200
box diagram by hand to include the user's latest idea? - You soon start discouraging
him from having ideas at all!). Even better, is if the tool is integrated with the
environment in an active way, e.g., an active data dictionary. This means that if you
want your change or definition to be usable in the final product, it has to go through
the documentation tool: there can be no difference between the documentation and
the reality. See figure 16.1.

Analyst
Workstation

A Typical CASE Tool

...-3-_
Diagram Editors

Compiler

Repository

Figure 16.1

Maintenance and changes can be further simplified, and reliability increased, by
using a principle called transclusion. This is attributed to Theodore H. Nelson, the
inventor of the Hypertext concept, now at Autodesk, Inc. Transclusion is the
inclusion of components in documents by reference, rather than by copying. Thus
there is one correct copy, which can be changed once, and which will then be
available in all its scales, orientations in all documents which reference it. How we
have desired that capability in our systems for so long! It can become a reality for
documentation with the emergence of compound electronic documents, hypertext

268 Managing Information Technology Projects

and techniques such as Object Linking and Embedding (OLE) in Windows"''''. Similar
techniques have been available in other environments (e.g., Apple and Unix) for
some time.

To facilitate the reusability of diagrams and figures, they should be prepared as
structured graphics, not bitmaps. Bitmaps are usually created using scanned images
or paint programs. They are stored as a color value for each "bit" (dot on a printer or
pixel on a screen). While simple, they suffer from a loss of resolution when scaled up
or down. This is normally seen as a ragged edge, normally called "jaggies". See the
accompanying examples. Structured graphics, by contrast, are stored as a
mathematical description of the collection of objects or shapes making up an image.
They are more complex to create and are normally produced in one of three ways:

Specialized design and drafting packages as used in Computer Aided Design
(CAD) or CASE tools (figure 16.1)

Structured art packages, such as Corel Draw or Harvard Graphics

Vector tracing a bitmap image to determine the predominant shapes and edges,
interpreting these into a structured image

Structured graphics can be scaled to any size without loss of resolution, as shown in
figure 16.2

• Provide secretarial suppon to the team. It is incredible how many bad but extremely
well-paid typists we see on project teams masquerading under the title of senior
analyst! Organizations are short-Sighted if they do not provide much more productive
(and much cheaper) secretarial support to project teams.

Structured

••••••• • • • • • • • •
i· .\ •••
• ••••• • •••
: ':.: BitMapped •• • •• ••
I. ••• :
•• • I ••• • -....... " ..

••••••• • •••• • ----------_. . . •••••••
Scaling of Images Figure 16.2

Chapter 16 Project Documentation 269

Having a good librarian that keeps track of things. This can be a secretarial resource,
but could also be a technical person who would provide support to several projects.
This function can enhance communication across projects, and sometimes identify
reusable components, thereby realizing huge savings. It is a good role to rotate
relatively new employees through, as they 'will gain a broad perspective on the
organization's systems

• Using technologies such as scanning, CD-ROM storage and automated indexing to
reduce the bulk of documentati on, make it easy to back up, and easy to access. This
will also simplify impact analyses in future. An apocryphal story tells us that when
the Patriot missiles were deployed in the Gulf war, that the missile system needed
three trucks to deliver, and the documentation to go with it required seven! Shortly
afterward, the documentation was all reduced to about a dozen CD-ROMs

Documentation Principles
There are some important principles we should follow in planning and producing our
documentation. They include:

• Communication medium. This should be appropriate to your environment and
intended audience. Online documentation is fine for system developers used to
browsing it in this form, but may be useless to a business analyst or user manager.
For users written, linear documents with an introduction, body and summary are
best. Some of the new hypertext authoring packages provide "linearizing" facilities
which not only allow you to set up a hypertext machine-readable document, but to
automatically produce a linear version from this. Make use of devices such as
diagrams and tables to aid clarity and explain the structure of the document where
necessary. Ensure that all printed material is of good quality, preferably laser printed.
No one wants to pore over scores of pages of faint text off an aging dot matrix printer
with a worn-out ribbon.

For presentations, overhead transparencies normally work best. They are relatively
easy to prepare, they are reusable, and they can be shuffled or extracted quickly to
suit the audience and the presentation (even on-the-fly if necessary). Be careful to
keep the size of lettering quite large (say an 18-point font) so that they do not
become too cluttered or detailed. When designing them, it is a good idea to divide an
A4 sheet into quarters, then pencil your content for each slide into one quarter. The
limited space ensures that you do not try to cram too much onto a single foil.
Overheads can be prepared quickly on computer with the aid of a graphics package
(e.g., Corel Draw.,.M, Powerpoint"'~) and a good printer.

Pre-drawn artwork can be included from "clip-art" libraries which are widely
available. This can liven up foils if used carefully. Preparing your foils on a graphics
package also gives you the option of reusing the images in computer-controlled
presentations. These can be accomplished with a device which projects the computer
image through a video projector (for example, the BARCO"'''' system) or by using a
panel which accepts computer output and projects the image via a standard overhead
projector. The mouse, keyboard, or a remote control can be used to change the
images, and to reverse if necessary

• Conciseness. Documentation should be as long as necessary, but no shorter. Before
preparing any document, think about the objective it must achieve. An example
would be a user manual. Here the goal might be: "To enable a. user with basic
computer literacy to understand the system adequately to install it successfully, use
all of its features, secure application data, and respond correctly to messages and

270 Managing Information Technology Projects

prompts generated by the system". This sounds simple, but to write such a user
manual is quite a challenge. Where possible, use diagrams of a type known to the
target user to reduce bulk and convey information accurately. An analyst could make
good use of an Entity Relationship diagram, for example. Use consistent references
on diagrams to act as an index to more detailed information. The Entity model might
be supported by detailed record layouts, for example

Clarity. The meaning should be clear and not dependent upon the perspective of the
reader. Be careful to define uncommon terms in the text and in a glossary. Get a
nontechnical person, uninvolved with the project, to read the document and see if
he understands what it is you are saying. We frequently develop a vernacular within
a project team that will not be easily understood by outsiders

• User frieruily. User-friendly documents are well structured. They allow the reader to
gain an overview quickly, and to find relevant information without going through
reams of paper. They provide for different levels of readers by making use of
introductions (which more experienced readers may skip), as well as providing
"jargon busters". These are panels which explain terms and concepts not familiar to
all readers. Those who know them can look at the title of the box, and skip these
parts easily. We should provide a table of contents at the beginning, as well as an
index at the end. The' former aids the reader in discerning the structure of the
document and which sections are of interest to the current purpose. The latter helps
us to find information on a particular topic. References should be provided to allow
the reader to pursue issues in greater depth, or to find background information.

Serif fonts in point sizes from 1 0 to 12 should be used for body text. (This is set in 10
point Times Roman, a serif font). Serifs are the little "tails" on the edges of letters
which aid the flow of the eye across the page. Non-serif fonts in point sizes from 15
to 18 should be used for headings. In this text, headings are set in 15 point Trium­
virate, a sans-serif font. These are very criSp and clear, attracting attention. They can
be more tiring to read for any length of time, though, so should be avoided for long
passages. Italics and bold styles can be used to attract attention, and for emphasis.

• Best knowledge. Each document should be prepared by the person with the best
knowledge of that particular aspect of the project or system, assisted, if necessary, by
someone who can write or document well. For example, the context diagram might
be the responsibility of the project leader, the Entity Relationship model the systems
analyst, and the user manual that of the analyst/programmer who developed the
prototype and user interface design. We should never assign documentation to a
junior person without the necessary in-depth knowledge to do a good job. Remem­
ber, the documentation is an integral and very visible part of the total product your
project will deliver.

• Consistency. It is vital that all documentation be consistent. This applies to technical
content (especially naming of parts of the system, data items, etc.); structure;
presentation and language.

• Accuracy. Equally vital is the accuracy of the documentation. One of the authors
once spent two very frustrating weeks trying to nondestructively change a municipal
billing system, written in assembler, with little success, only to discover that the
impressive documentation was hopelessly inaccurate with regard to memory location
usage. Using automated tools (e.g., CASE) tied to a dictionary or repository can
greatly facilitate keeping the system and documentation in step. Even if your
installation does not have these facilities, some simple, home-grown utilities can go a
long way in preventing problems.

Chapter 16 Project Documentation 271

• Don't spoil the ship for a ha'p'onh of tar! If we are going to put a lot of effort into
doing the documentation right, reward your team and encourage their pride by
getting it printed and bound professionally. This can be expensive, but not compared
to relation to the overall effect on the morale of the team. It also sets a benchmark for
later projects to achieve, thus lifting the standard of documentation generally.

Martin-McClure-Odell Notations
For systems projects, we recommend the diagramming standards developed by James
Martin and Carma McClure, and now extended for Object Orientation by Martin and James
Odell. You will find that these are very consistent, usable, comprehensive, and are well sup­
ported by a variety of CASE products. They include techniques for process models, data
models, structure charts, object models, state diagrams, event models and program struc­
tures.

Meetings, Decisions and Minutes
All project meetings should be minuted. These can be just "action minutes". They do not
need to show the flow of discussion and bargaining which has taken place, just the decisions
taken. Be sure to record:

• The date and time of the meeting

Who was present, who sent apologies, and who was absent

• Any decisions taken

Any actions which must be pursued as a result of the meeting (be sure to identify
responsible parties and expected date of completion)

Distribute these minutes as quickly as possible after the session.

PBM of Documentation
We have reproduced a Product Breakdown Model of the documentation structure for a
mainframe development project, where a package was considered, but in the end not
accepted. This is an indication of the extent and coverage of complete documentation for a
project. In some cases, the item mentioned could be very brief (a single paragraph). It should
nevertheless be considered.

Documentation
TeChnical Documentation

System Charter
Technology Charter
Business Requirements Definition

Context Diagram
Conceptual Model
Technology Review
Formal Business Rules

Technology Requirements Definition

272 Managing Information Technology Projects

Functionality
Capacity
Operability
Reliability
Security
Connectivity/Compatibility

External Design Specification
Functional Model

Functional Decomposition Chart
Function Narratives

Data Model
Entity Model
Data Item Definitions
Normalized Relations
Relational Model Diagram

Behavior Model
Technology User Interface Standards
Dialogue Definitions
Batch Flows
Prototype Screens
Prototype Reports
Interface Definitions

System Consistency Matrix
Logical Access Maps

Invitation to Tender
Requirements

Function Model
Data Model
Operational Requirements
Technical Requirements

Procedure for Submission
Submission Process
Submission Format

Supplier Short List
Package Evaluation

Selection Criteria
Package Functional Mapping
Package Data Mapping
Package Technology Mapping
Package Throughput Assessment
Package Technical Quality
Package Supplier Support Assessment
Package Economic Assessment
Package Recommendations

Technology Evaluation
Selection Criteria
Technology Functional Mapping
Capacity Evaluation
Operational Evaluation
Reliability Evaluation
Security Evaluation
Connectivity/Compatibility Evaluation

Chapter 16 Project Documentation 273

Summary Technology Evaluation
Technology Recommendations

Technical Design Specifications
Product Structure Map
Physical Database Design
Run Unit Specifications

Process Graphs
Process Narratives
Physical Accesses

Bridging and Conversion Strategy
Test Specification
Performance Prediction

Physical System Documentation
Program Listings
Control Language Listings
Data Definition Listings
Sample User Interfaces

Input
Output
Input/Output

Parameter Data
Test Documentation

Test Plans
Test Cases

Test Conditions
Test Data
Correct Test Results
Actual Test Results

Installation Documentation
Physical Distribution Map
UserlLocation Matrix
UserlFunction Matrix

Project Control Documentation
Project Charter

Project Definition
System Charter
Feasibility Report

Project PI an
Project Actual Measured Performance

Time Reports
Deliverable Completion Record
Expenditure Record

Project Progress Reports
Quality Assurance Documentation

Review Reports
Departure Review
System Requirements Review
Preliminary Design Review
Critical Design Review
Product Acceptance Review
Post -Implemen tation Review

Requests for Change

274 Managing Information Technology Projects

Impact Analyses
Change Notices

Project Meeting Minutes
Project External Correspondence

Intra-compan y
Extra -compan y

Operational Documentation
Facilities Guide

System Overview
Batch Processing Runs
Processing Run Control
Hardware/Software Environment
Backup, Recovery and Restart
Reports
Data Structure, Volumes and Growth
Program & Control Language
System Errors
System Failure
System Maintenance
Performance Monitoring
Data Capture

User Guide
System Overview
Basic Organizational Documents
Reports
Screens
On-line Procedures
Computer Equipment
Management and Control Procedure
Departmental Structure
Training
Run Requests
Back-up and Recovery
Document Storage
Liaison

Training Package
Student Materials

Course Notes
Workbook
Tutorial

Instructor Materials
Presentation Materials
Course Time Schedules
Lesson Plans
Case Study Background
Data

Installation Procedure
Data Files
Hard Copy Content

Chapter 16 Project Documentation 275

Summary
Documentation is an integral part of the total product you deliver. It determines the ease
with which the product can be used, installed, modified and repaired. These activities
consume more than half of the lifetime costs. Documentation is thus an extremely important
activity. Do it well.

276 Managing Information Technology Projects

Case Questions

MyWay Organizer

016.1
Define a Product Structure Map for the contents you believe should be in the shrink-wrap
package in which the Organizer is planned to ship. (15 mins)

016.2
You want to include a large number of captured screen images in your user manual. What
kind of graphics are these? What will happen when we scale them? Do you have any
suggestions for how we should proceed? (10 mins)

Handover Trust
016.3
Your suggestions for the standard lifecycle incorporating quality assurance tasks have been
approved by management. Your next task is to develop a structure for a standard set of
documentation which all projects will use for planning, tracking and reporting. Present your
answer in the form of a PSM. The structure should ensure that projects are thoroughly
planned, that adequate information is collected for proper tracking, and that progress is
consistently reported to management across a variety of project types. (30 mins)

Chapter 16 Project Documentation 277

1 7 Communication

Introduction
You may :~ave met good project managers who are good technicians. You may also have
met those who are good managers. We believe that you have to be a good technician and a
good manager to be effective. The difficulty is that many of us have long experience in tech­
nical are~, but are new to management. Although the next chapter will deal with the man­
agement of people, this chapter focuses on the skills many of us have already been exposed
to . human communications. If you are in the property industry the most important factors
are location, location and location. In a project the most important factors are communica­
tion, communication and communication! This is reflected in the highlighting of all the

Project Lifecycle

Until All Tasks
Are Complete

/Per Phase

Figure 17.1

Chapter 17 Communication 279

boxes in the project lifecycle diagram (figure 7.1) - communication is vital at all stages.

While traditional writing and formal speaking skills are important, today's challenges
demand skills in developing and maintaining relationships. These relationships depend on
open communication established by probing for information, presenting views and discuss­
ing individual behavior.

It is becoming increasingly difficult to be a successful project manager. Projects are
becoming more complex and project team members are more demanding. Traditional
management approaches have been replaced with those where the establishment of mutually
satisfying relationships between manager and subordinates prevail. This is the key to
successful project management. To develop these relationships, the project manager must be
a skilled communicator - skilled at getting information from others; skilled at expressing
views without creating problems and skilled at discussing behavioral issues. This chapter is
about these skills and how they fit in the project context. Remember that skills are easy to
learn but more difficult to apply.

Communication Styles
Developing an appropriate communication style is a critical step in becoming a project
manager. Traditional managers tend to have a one-way style where they direct staff using
specific instructions which are not negotiable. The l.S. industry has many managers who are
(or think they are) technically superior to their staff. These managers always seem to know
the best way to solve problems. Subordinates are not able to develop their own approaches
when working with them. A preferred approach is a consultative one where subordinates are
allowed to develop and test their own approaches. In this way, more initiative can be used
and staff have a greater feeling of commitment to the task.

As a project manager, you may feel that the consultative approach should be the only
applicable management style. While this is generally true, bear in mind that there will be
occasions when you will have to use a more direct style in a pressured situation to get things
done. Your job is certainly to develop your staff and ensure that individual and team needs
are satisfied. However, you are measured on results: producing an information system on
time, on budget and that satisfies user requirements. The following interview with a project
team member (opposite page) shows how a consultative management style does not
necessarily lead to a good project outcome.

Our view is that a project manager has to get things done through people. Creating a
productive environment for people to work in is important. So is a good consultative
approach. But there must be a balance between the task, the individual's and the team's
needs. Being popular with staff (like Andrea), but unable to influence senior management,
will not produce the required results. Influencing people at all levels in an organization is
key. This is done by contact through discussion, interviews, presentations or meetings.

Interviewing
Most project managers who have been systems analysts will have developed strong
interviewing skills - especially probing users for needs and problems. A project manager
will have to conduct other types of interviews, mainly in staff selection, appraisals and
performance discussions. These are discussed in detail in the next chapter. These interviews

280 Managing Information Technology Projects

differ from a probing interview in that there are no second chances and a bad interview will
inevitably lead to a deterioration in performance or relationships.

The best approach to any interview is to plan it. You should determine beforehand what you
want to accomplish and the interview structure. A typical structure could include some
introductory focus on the reason for the meeting, followed by the specific discussions, then
ending with some clear concluding remarks which include individual action and timing.
These should be documented to ensure understanding. Setting aside adequate time and
providing a location without distractions are important. This is especially important in large
companies where open-plan offices are the norm.

"I have known Andrea for 5 years and worked for her for the last 2. I
got to know her as if she was a family member - in fact, I have never
worked for a more caring person. She always had time to listen to my
problems - even when they were nothing to do with work. In the last
project we were working on, we were 2 months behind schedule.
Everyone was working overtime to catch up, even weekends. Even
under this pressure, Andrea still found time to discuss individual
problems. Despite the long hours, we still could not catch up even
though Andrea was always there. When Andrea explained that we
needed more staff, the management did nothing about it. Eventually,
a new project manager was appointed who seemed to get everything
she wanted. The project was completed ahead of schedule and
everyone was excited with their contribution. But, we all still miss
talking to Andrea."

Negotiating and Influencing
Project organization structures often reduce the ability of the project manager to control
project team members. Project managers have to spend time negotiating with superiors, co­
workers and subordinates. As hard bargaining does not work well in the project context, a
climate of trust and cooperation has to be developed. Negotiation takes place between two
parties because there is a conflict of interests. Typically, a project manager will have to
negotiate for user resources, computer time and time of computer specialists such as network
designers and database administrators. Because pressure for resources leads to conflict, we
have to find ways to deal with the situation. One way is to ignore the conflict, hoping that it
will go away. Another approach is to get your own way irrespective of the consequences.
Alternatively, you might resolve the conflict by giving in to the other party. Compromise is
another approach. and in this case both parties at least get something. The last alternative is
problem solving where a solution is sought that can satisfy everyone's interests.

All of the above strategies have their place in negotiation. If you don't care what happens -
withdraw. Giving in to other parties is often used in projects where managers or users

Chapter 17 Communication 281

demand deadlines. This is realistic when dealing with a customer but it is essential to re­
negotiate project scope or resources if time is so important. Giving in to unrealistic demands
only delays problems. Compromise can be used as a quick solution but is inferior to problem
solving. The latter demands considerable participation and trust. For an agreement to be
advantageous to both parties, there must be a climate of total honesty.

Negotiation is a process. First of all you have to define what the conflict is about. Identify
the situation or events that led to the negotiation. Think about the situation you would like to
achieve and some of the likely alternatives. Then try and project how the other party will
respond. Once you have done your homework, schedule a mutually convenient meeting. At
the meeting:

• Introduce the problem

• Agree on the problem structure

Search for alternative solutions

• Select the best alternative

If a deadlock is reached where the two parties cannot agree, sleep on the problem and try
again the next day when new ideas may be forthcoming.

Given that problem solving is a powerful negotiating tool, you should have good problem­
solving skills. These include being able to focus on the problem being discussed without
being diverted to other issues; searching for areas of common interest and emphasizing areas
of agreement. Negotiation often takes place within the organization's procedures and
practices. Projects sometimes create novel situations and this is where company politics
comes into play and decisions get made by the "old boy's network". The network is built on
personal relationships and a good project manager will try to build long-term relationships
through normal daily activities.

Presentations
The presentations you give are crucial to the project's success. Most of them will be to
senior managers. The presentations will require careful planning and execution, demanding
a lot of your time. As most of these presentations are "selling", the structure of the session
will be slick, the slides will be constructed using the best graphics package and you will
have rehearsed your presentation to ensure success. Because meetings at this level include a
fair amount of company politiCS, make sure you know the audience and their position with
regard to the project.

Meetings
Most meetings will be dealing with output from the SDLC and PLC activities. However,
there are others related to team development and new techniques like Joint Application
Development (JAD) sessions. The Status Meeting is a regular project meeting, perhaps
weekly, and is attended by the entire project team. The team reports on project progress and
discusses problems. The status of the project is then assessed.

282 Managing Information Technology Projects

Input may be verbal or written, depending on the complexity of the project. Although people
claim that these meetings are a waste of time, it is amazing how many issues affect
everyone. The ideal time for a status meeting is on Friday afternoon. This gets people
working to that deadline in midweek, whereas a Monday meeting will ensure more weekend
work to make the necessary progress. It is also remarkable how quickly people can get
through an agenda when the weekend beckons.

Review meetings use a lot of people time. They should therefore be planned and run
efficiently with a set agenda that has been distributed in advance; they should be in a good
venue free from interruptions; and they should have a strong chairperson who keeps to the
agenda. Minutes should be taken with clear action points assigned to individuals and
progress on these items must be followed up.

Technical reviews relating to planning, design, coding, testing or documentation are carried
out using a walkthrough technique or code inspection approach. These are discussed
elsewhere but it is important to note that this is not a management appraisal of the individual
but a peer review of a technical product. Its primary objective is to detect and correct
technical problems.

Management reviews are carried out from time to time to keep appropriate user managers
aware of progress and problems in the project. A Project Steering Committee normally
consists of the project manager, the user project coordinator, functional managers and a
senior user manager. This committee typically meets monthly to receive information about
the project. Milestone reviews are built into the project plan and meeting them calls for a
celebration. The review takes place in two sessions - one for the technical team to discuss
the current position and to plan for the next phase, and the other where the users are brought
in to share in the celebrations. These sessions are important to maintain morale and to get
everyone excited about the work still remaining. There are several milestone meetings
required in a project and these have already been specified in a previous chapter.

The traditional SDLC provides for interviewing to determine user requirements. This is a
slow process and does not necessarily lead to user concensus. Bringing the appropriate users
together in a formal session called a JAD session has gained considerable popularity. These
sessions can be very effective when combined with the use of CASE tools. Because of the
growing importance of JAD, it is discussed in a separate section.

Joint Application Development
A JAD session is a facilitated, team-based approach to solving business problems. It
comprises one or more meetings. Conflicts are resolved and consensus is reached through
brainstorming meetings. Thus, in a JAD meeting, the development of user requirements is
carried out in real-time in contrast to the traditional and slow approach of individual user
interviews. JAD works because the right people are involved who can make decisions by
contributing to a decision-making process and reach consensus on solutions with their peers.
This ensures better executive conunitment and improved user input.

The concept originated in IBM Canada in 1979 and is now a standard published by the
world-body GUIDE. The technique involves the right people getting together at the right
time to make decisions about a project and produce specific deliverables. JAD sessions are
structured in that they have specific objectives and are Jed by experienced facilitators. The
technique goes far beyond the standard management meeting. A unique feature of a JAD

Chapter 17 Communication 283

session is the use of CASE tools. CASE automates the use of modeling techniques generally
used in systems analysis and design. The "automation" of the meeting increases productivity
and produces more rigorous deliverables.

JAD can be used to:

• determine I.S. strategy

• prioritize projects

• determine system requirements

• do data modeling

produce a technical design

choose technology

• do a technical review

• produce an implementation plan

The participants in a JAD session include managers, users and I.S. staff. The group should
be able to understand the business and technology while having the authority to make
decisions.

Typically the JAD membership should include the following (shown in figure 17.2):

An executive sponsor who is a senior executive and who can make project decisions
regarding resources and user selection

• User managers who take final responsibility for the system and are involved in the
entire project

• Users who understand the business in detail and will eventually use the system

The project manager and/or leader who is responsible for the project

LS. professionals who are part of the project team

• The JAD leader (facilitator) who runs the session and ensures action is taken on
outstanding issues

• The J AD scribe who documents sessions, often using an automated CASE tool

• Observers, who cannot participate in the session unless requested to do so, but attend
to learn about the JAD process

In some organizations some of the above roles are combined. This has been found to be
detrimental to the process. For example. if the project manager and J AD leader are the same
person, there may be a bias because the project manager is often an LS. professional. The
JAD leader also needs a different set of skills.

The JAD process works in three distinct phases as shown in figure 17.3. Session preparation
is followed by the JAD session proper leading to post-session work.

284 Managing Information Technology Projects

JAD Participants Figure 17.2

Session Preparation
JAD sessions involve a lot of expensive time. If we get 5 to 10 senior professionals in a
room for a day, that could easily cost about two month's salary for a team member. It is vi­
tally important that sessions go well. To ensure this, pre-session planning is carried out by
the JAD leader and the scribe. Session preparation consists of:

• Reviewing J AD documentation

• Developing JAD controls

• A review by the executive sponsor

Interviewing the participants

• Providing JAD training (where n"ecessary)

• Reviewing the agenda

Running the Session
The JAD session normally starts with introductions and the executive sponsor introducing
the purpose of the session. The JAD process is then reviewed, followed by a presentation of

Chapter 17 Communication 285

JAD Process

Session
Preparation

JAD
Session

Post-Session
Follow-Up

Figure 17.3

the agenda after which the session gets under way. In the session, the JAD leader ensures
that:

There is only one conversation at a time

Every participant is given a chance to contribute

The subject focus is not lost

Consensus is reached

• All ideas are considered

At the end of the session the leader reviews the results, determines future activities, decides
when deliverables will be available and closes the meeting. Post-session work comprises a
review of the session followed by the completion of the deliverables using members of the
project tearn.

Good JAD sessions are run by leaders who can influence people without being dictatorial.
They should be people-oriented, with a humorous touch, while being persistent enough to
get results. JAD is not a panacea and can fail if incorrectly used. To be successful, there
must be senior management commitment, the session must be well prepared, and the right
participants must attend.

A successful JAD session requires:

286 Managing Information Technology Projects

executive support

• company-wide use of JAD

a well-organized session

• a strong J AD leader

the right participants

a good outcome

JAD succeeds because of everything being visual and the JAD leader continually seeking
clarification and commitment. Companies are reporting up to a 45 percent reduction in time
(not effort) in the SDLC phases from planning to external design. Successful JAD sessions
happen because of good group dynamics. The effectiveness of a group relates to how well
the facilitator and project manager build the team.

Team Building
A project team consists of a group of people with divergent ideas. Thus disagreements will
occur from time to time. These should be appraised in terms of group think to enhance group
performance. Conflict can lead to creativity. When a team realizes this, they will enhance
group creativity. Once opinions are encouraged and discussed, there will be increased
consensus and a strong commitment to decisions. A good project manager will resolve
conflicts through confrontation, negotiation and resolution. This gives team members a
feeling of belonging and ownership of the project's goals. This in turn leads to an increased
responsibility by each individual to achieve these goals (discussed further in the Motivation
section in the next chapter). This participative approach gets far better results than managing
through coercion, persuasion and directives.

Chapter 17 Communication 287

Case Questions

MyWay Organizer

Q17.1
At your previous company, you used lAD techniques extensively with clients involved in
development projects. This is a fairly new concept to your software house, since most of
their development to date has involved products conceived in~house. Structure a presentation
to management detailing the key elements and benefits of lAD, as well as the critical
success factors for its implementation. (20 mins)

Q17.2
The above may be physically presented via overhead foils to your study group at the discre~
tion of the instructor. If you undertake this, we suggest a presentation not exceeding four
overhead foils and completed in around 10 minutes. (foil preparation time, about 10 mins)

Gleam Stores
Q17.3
Implementation of the Gleam Stores system necessitates training of a vast number of people
at widely distributed locations around the country. Consider what media and format would
be most appropriate for a cost~effecti ve, but foolproof, training program. Your suggested
solution should specify who will be trained, to what level, how much time this will entail per
type of person, what medium(s) you will use, what trainers or supervisors will be involved,
and the overall approach and philosophy to be followed. (30 mins)

Handover Trust
Q17.4
Handover senior management is quite keen on the idea of JAD, but middle managers are
very nervous, particularly because of all the other changes going on in their lives!
Nonetheless, you are going to use the technique with a group of managers in the Claims
Processing area. Prepare a presentation, which you will walk through with each person
individually, telling them about the process, how they can participate, what is expected of
them, and what the advantages are over other approaches. Also try to anticipate any fears
they may have and allay these. If possible. divide into groups and role~play these sessions.
The interactive session should take approximately 10 minutes. (Preparation, 30 mins)

288 Managing Information Technology Projects

ThoughtWell Books
Q17.5
Given the problems which have been occurring on this project, personal relationships are
strained. There has also been less of a team feeling with the departure of Lars. Carefully
consider what team-building activities and approach you could use to:

• Get your own staff working as a cohesive, motivated group

• Build common goals, objectives and understanding

• Build a larger team among yourselves, the sponsor, and other ThoughtWell person­
nel affected by the project

(30 mins)

Chapter 17 Communication 289

18
Introduction

Managing
People

The management of knowledge workers is one of the most critical areas facing business
today. In first world countries, the number of knowledge workers now exceeds any other job
category. These workers have a disproportionate effect on all aspects of society as it is they
who determine what will be accomplished in the foreseeable future. Differentiation between
organizations will depend largely on the contribution of these professionals. The job they do
is not routine. Difftcult to specify and unlikely to be totally automated, the job is highly
dependent on the situation and the problem at hand. It demands judgment, ingenuity and
creativity.

Techniques used to manage people in routine jobs are often inappropriate when managing
professional activities. For example, elaborate job descriptions are often developed but these
have little effect on the individual's performance and can lead to political infighting.
Approaches such as Management by Objectives (MBO) and Quality Circles are installed at
great expense, then quickly forgotten, or worse, lead to disastrous results. Despite these
potential failures, managing professional activities does need structure. Understanding the
nature of management provides us with the knowledge and tools we require to manage
people. Good management can improve the overall performance of the professionals we
manage.

The changing nature of the Information Systems (I.S.) industry makes managing I.S.
personnel more complex. The industry has specific problems relating to technology and
scarcity of personnel. Being a new industry, we have not yet adopted many management
techniques used in other disciplines.

As a project manager, you will have to deal with all managerial activities relating to people,
teams and tasks. To manage people, it is useful to define the major process and interactions
shown in figure 18.1.

Before recruiting or selecting staff, the project environment must be clearly defined and job
descriptions and job specifications completed. Suitable staff, from inside or outside the
organization, are then selected to fill the vacant positions. Once hired, newcomers need to be
socialized into the organization, after which specific objectives and action plans are set for
them. Having completed a task, the individual must be given feedback on his performance.

Chapter 18 Managing People 291

This feedback is kept and used in a later, formal perfonnance appraisal. We must also ensure
that project-team members are highly motivated and that their career development is not
neglected.

People Management Process Figure 18.1

Job Design
Jobs are the basic building blocks of organizational structures. A manager decides who does
what job and the level of authority given to each individual. Jobs provide income,
meaningful life experiences, self-esteem and often regulate our lives. We see ourselves and
others in terms of jobs. Thus we see ourselves as systems analysts or programmers rather
than Paul Simon fans or football supporters. The performance of organizations and
individuals depends on how well management is able to design jobs. The new concept of
business process re-engineering includes job design within the redesign of organizational
processes.

292 Managing Information Technology Projects

Analyzing a job involves looking at the skills, abilities and responsibilities required by an
individual to do the job, as well as the specific tasks that make up the job. A project manager
can use the Work Breakdown Structure to define the tasks and then derive the people skills
required to complete them. Job information can be described in a job description and a job
specification (the terms "position description" and "position specification" are also used).
This job information assists in recruitment and selection of staff to ensure skills are
optimally matched to the job requirements. This information is also used to establish levels
of seniority in organizations and pay scales.

To perform a job analysis, a description of the job and the description of the person required
to do the job are developed using the characteristics typically shown in figure 18.2.

Experience .

Technology

Techniques Used

Supervision

Working Conditions

Salary

Job Analysis

Job Analysis
Procedure for obtaining

facts about a job

(~:,;~g",Zf"~~~~,,, Y::
'--~,;-\"

0~JO~!f .•...................................•....
··Sta~mern.of thl:! cltara~nsticS

··nee(ied·to perforin the job.

EducatiOn

Work

Experience

Judgement

Vision

Creative Skills

Communication Skills

Figure 18.2

Many job advertisements focus strongly on the job description aspect. To build a team, it is
important to ensure personality characteristics are also specified clearly. It is a sad fact that
we hire people for their skills and experience, but fire them for their personality
characteristics and behavior.

The characteristics of the job as designed can encourage or discourage job performance.
This will depend on the views of the job holder - different people may have different values
within the same job. For example, some people may view responsible and challenging work
in a negative light while others regard it as highly positive. These aspects will be discussed
later in more detail under motivation.

Chapter 18 Managing People 293

It is important to complete the job description and job specification before initiating a search
for suitable candidates. This search could be either internal or external to the company. You
must know in advance what the job offers and the type of person that best matches the job.
An example of a typical job description and job specification can be seen in figures 18.3 and
18.4.

i

JOB DESCRIYfION ~
l:

Position Title: Manager, Systems Development

Salary Range:

i
I

$80,000 - 110,000 depending on experience I
:;:::

Duties and Responsibilities
L Provide leadership and direction to three project leaders.
2. Plan systems development work in consultation with the LS. Manager.

This involves working closely with managers of departments requesting
services.

3. Recruit and develop all staff with proper training and experience.
4. Chair a committee to discuss the latest tools and techniques in systems

development and to recommend possible acquisitions.

Work Environment

l~~
(
i
I'
t·

I :t ::;:
~~
:;;,::

':

The job is based at head office. The department is part of the I.S. Division It.:
(23 analysts, 70 programmers, and 47 support staff), equipped with two main- :;.
frame computers serving a network of 200+ terminals, extensive database !~
management systems and 145 PC's distributed throughout the organization. !.
This is a key position in the Division. ~

Job Relationship to I.S. Division ~
:~

Two other managers report to the LS. Manager. These individuals interact ii
closely through weekly meetings. The S.D. Manager is expected to develop ~'

subordinates and to maintain a work environment conducive to high perfor­
mance at all times.

Typical Job Description Figure 18.3

Staff Selection
One of the most important responsibilities of a project manager is hiring staff. Sometimes
you will be able to choose staff, at other times staff, who would not be your first choice, will
be transferred to your project. The capabilities, productivity, quality and the quantity of out­
put achieved by the team is determined to a large extent by the team members. The organiza­
tion will also have to live with your choice long after the current project. The apparently
simple task of hiring is therefore critical. While it is possible for project managers to

294 Managing Information Technology Projects

JOB SPECIFICATION

Education Level A higher degree in Information Systems or
Business.

Work Experience At least 5 year's pertinent work history in the
1.S. industry at a management level.

Communication Skills Demonstrable oral and written skills at senior leveL

Interpersonal Skills Capable of motivating others through strong leader­
ship and energy. Entrepreneur with vision in a
changing environment while ensuring current
problems are solved.

Typical Job Specification Sample Figure 18,4

influence the quality and quantity of work of those hired, you will be severely constrained
by their capabilities and attitudes. Good staff selection procedures will enhance your chan­
ces of recruiting satisfactory staff; a poor approach will generally produce an undesirable
outcome.

Two factors should be carefully noted when selecting staff:

• The quality of performance of an individual persists through time. Thus a poor
performer would tend to remain a poor performer over his career path

• A relatively small percentage of those hired are responsible for a disproportionately
large percentage of both the best and the worst performances

Research has shown that individuals judged as high performers in the early stages of their
career continue to be judged high performers at a later stage. Similarly those judged as low
performers tended to persist at that level of performance. There is very little migration from
high to low performance over time. Only those people who were judged medium per­
formers, either improved or worsened toward the extremes.

A small number of professionals account for the best and worst performance in a typical
team. This is an example of Pareto's Law, which states that in social and economic affairs,
many relationships can be expressed as a straight line on a double log scale. Simply put, a
few of the X's account for a large percentage of the Y's. Managers know this as the 80/20
rule. For example, 80 percent of inventory costs can be attributable to 20 percent of the
items. Managers in many professions report that 80 percent of the best output of their
organization could be attributed to only 20 percent of their people. Conversely, 80 percent of

Chapter 18 Managing People 295

the problems and disasters could be attributed to a different 20 percent of the staff! Most
managers can easily recall the names at each extreme. Pareto's Law can be used to the
project manager's advantage. A small improvement in the staff-selection process can
achieve very large improvements in performance. The trick is to identify and hire "stars" and
ensure that "disasters" are not hired. Overcoming mistakes in staff selection takes a very
long time, and is very expensive in terms of damage caused.

Interviewing New Recruits
Before considering the interviewing process, consider the following interview originated by
Tom DeMarco and Tim Lister. Imagine you are a circus manager interviewing a candidate:

Circus Manager:
Candidate:
Circus Manager:
Candidate:
Circus Manager:
Candidate:
Circus Manager:
Candidate:
Circus Manager:
Candidate:
Circus Manager:
Candidate:
Circus Manager:

How long have you been juggling?
Oh, about two years.
Can you handle three hoops and four hoops?
Yes both.
Do you work with flaming objects?
Of course.
Do you work with knives, axes, open cigar boxes and floppy hats?
I can juggle anything.
Do you tell funny stories while you are juggling?
I do everybody loves them!
Well, that sounds perfect - you have got the job.
Er - don't you want to see me juggle?
Oh - that's interesting, I never thought of that!

Hiring a juggler would be nonsensical without first seeing a performance; that should be
mandatory. When you set out to select a designer or a programmer, it is easy to discard
common sense. Ironically, the interview is just talking. If a person is being hired to generate
and produce a product, then they may well have done this many times before. Examining a
sample of the products previously produced to see the quality of the work is an obvious part
of hiring but is it ever done? There appears to be an unwritten rule when interviewing
programmers and analysts that says that it is okay to ask the potential candidate about the
work they have done in the past, but not to ask to see it.

Selecting 1.S. personnel should follow a four-step process:

Preparation of job description and job specifications

• Initial screening of candidates

Company visits and interviews

• Final selection

A job specification and job description are required to initiate the job search. The manager
must know in advance what the job offers and the type of person that will best match the job.
The next stage is to carry out an initial screening of the candidates. The purpose of initial
screening is to weed out unsuitable candidates. This is done by reviewing the candidate's
CV (curriculum vitae) or application form and performing reference checking with previous
employers. Note that reference checking cannot normally be done with the current employer,

Tom DeMarco and Timothy Lisler. Peoplewan: Producliv< ProjeclsaJUi Teams. COp)Tigbl 1987 by Tom DeMarco and Timotby USler.
Adapled from "Hiring a Juggler." pp. IO()'I04. by permission of Dorset House Publisbing. 353 W. 12S1 .. New York. NY 10014. All rights reserved.

296 Managing Information Technology Projects

making current performance of the candidate difficult to determine. An initial interview may
also be carried out to verify some of the information about the candidate's abilities and
skills. This interview gives both the candidate and the company an initial view of each other.
The outcome is a decision to continue further with the selection process or not.

On passing the initial screening test, the candidate is then invited to visit the fIrm for further
interviews when the candidate will be asked to expand on their career plans, experience and
motivation. Aspects such as problem-solving, oral communication, interpersonal skills and
ability to cope are also probed. This is a more intensive screening process, allowing a num­
ber of managers to talk to the candidate before a final decision is made. Note that the com­
pany at the moment has a relatively clear idea about the job and the kind of person they are
looking for. They have very limited information about the candidates for the job. Although
aptitude tests, achievement tests, personality tests and other tools are more objective in as­
sessing individual characteristics, the interview remains the most popular method of obtain­
ing information. We know that interviewing is a good procedure for gathering factual
information during systems analysis. However, it is severely constrained when trying to
make judgments, because of its subjectivity. It is surprising that use of interviews as a means
of gathering and assessing people has increased in the selection process to the point that few
other techniques are used.

Problems found in interviewing include:

Interviewers often make their decision on whether the interviewee is suitable within
5 minutes of the start of the interview. You will have to be more objective than that!

• The interviewer and interviewee may not cover all the important dimensions within
the interview. The interviewer may not have a complete description of the job or the
interviewee may end up not knowing the work conditions being offered

When several managers interview one person, some questions can overlap while
others are missed entirely. Planning this type of interview is essential

• The interviewer may allow one attribute to sway the evaluation. This is called the
Halo Effect and occurs when an interviewer judges an applicant's entire potential for
job performance on the basis of one characteristic (such as how well the applicant
dresses or tal ks)

The interviewer's judgment is affected by pressure to fill the position. This is
especially true in I.S. where turnover is high and skills are scarce. This may cause a
lowering of standards

• Scheduling interviews in rapid succession can produce poor decisions, bias and use
of stereotypes in selection

There are several ways to overcome potential interview problems and to increase the validity
and reliability of the interview:

• One approach is to use past behavior to predict future behavior. This should consist
of examples of specific experiences and involvement, possibly with documented ex­
amples (e.g., specifications completed, programs written)

• Having several managers involved in the interview. The final decision will then be
based on several varying perspectives

Tom DeMarco and Timoll:ly Lister. Peepleware: Productive Projects and Teams. Copyright 1987 by Tom DeMarco andTimo!hy Uster.
Adapted (rom 'Hiring a Juggler: pp. 100-104. by permission of Dorset House Publ.isbiDg. 353 W. 12 Sl .. New York, NY 10014. All rights reserved.

Chapter 18 Managing People 297

• An interview consists of a verbal component and a nonverbal component - body
movement, gestures, fIrmness of handshake, eye contact and physical appearance.
Some interviewers place more importance on the nonverbal than on the verbal
aspects of the interview. Get help in this area from a trained personnel manager

Useful questions that may be asked by the interviewer to assess the applicant's
performance include:

How the applicant has performed in a similar capacity in the past

Why the applicant wants to change jobs?

What are the applicant's career objectives?

Does the applicant like working closely with other people?

Ask the candidate to rate his performance against his peers in his last company.
If previous performance ratings are available, get them in writing. (Note that
these questions are very predictable and could lead a well-prepared candidate
to give a non-genuine response).

• Other more personal questions should be asked in an appropriate manner. For ex­
ample, whether any physical defects may require adaptation of the work environ­
ment. Hobbies or interests could also have a direct bearing on the job. Ask about any
courses taken which may enhance job performance.

Employment Testing
Testing is another important procedure to assess information about an applicant's aptitudes,
experiences and motivations. Employment tests include any pencil-and-paper (or
computerized!) measure used as a basis for an employment decision. The most common
types of tests measure aptitude, achievement and motivation. Note that these tests must be
valid and reliable to ensure correctness. The results are only one aspect of the evaluation
process and should be used in conjunction with interviews and other information.

Aptitude Tests
These measure the potential of individuals to perform in a particular area. Popular tests
administered to programmers include the computer programmer aptitude battery from IBM.
Advantages claimed from such tests include improved accuracy in selecting employees and
more objective means of selecting the best applicant. However, many of these tests have
proven controversial. For example, there is no proof that a high mark in these tests equates
to being a top performer. Also, in many companies tests are given too much weight and have
replaced judgement. In the United States, many tests have been discontinued because they
were seen as discriminating against ethnic minorities. Aptitude tests are used because of a
lack of alternatives.

A good reason not to use aptitude tests is that we may be measuring the wrong thing.
Programmer aptitude tests are designed to measure programming aptitude or whatever is
required in the fIrst position that the employee takes up. If that person should join the
company, it is unlikely that he will be in the same position in several years' time. An

Tom DeMarco and Tunolby Lisler. Peop/.ware: ProdJtclTv< ProjecJ' tllId T.ams. Copyright 1987 by Tom DeMarco and Timothy Uster.
Adapted from "Hiring a Juggler: pp. I O(j. 104. by permission ofD<>rset Hoose Pubtisbing. 353 W. 12 St.. New York. NY 10014. All rights reserved.

298 Managing Information Technology Projects

Management Role

Technical/Detail Communication Interpersonal Leadership

Skill

Changing Skill Requirements Figure 18,5

aptitude test, therefore, may provide the right type of person in the short term, but is less
likely to predict longer-term performance. In a relatively short time, I.S. staff can develop
from a technical to a management role with very different skill requirements, as shown in
figure 18.5.

Achievement Tests
These are used to predict an individual's performance on the basis of what they know. These
tests tend to be samples of the job which will be performed if the candidate is successful.
Many achievement tests are pencil-and-paper oriented and tend to be less job-related
because they measure facts and principles, not the actual use of them. Thus a candidate
could be very successful in passing a test measuring knowledge of analysis, whereas they
may well become poor systems analysts. Despite this problem, these tests are used widely in
the professions: for example, the bar exam for admission to the legal profession and the final
qualifying exam for admission as a chartered accountant. A variation of the achievement test
is a recognition test widely used in the advertiSing and modeling industry to select
applicants. In a recognition test the applicant brings a portfolio of their work to the
interview. Note that these portfolios contain no clues regarding the conditions or
circumstances under which they were produced. This approach could be useful in 1.S.

Psychometric Tests
These are designed to measure an individual's motivation and categorize personality and
behavior, as well as preferences for certain types of jobs. They are sometimes referred to as

Chapter 18 Managing People 299

personality inventories. Typical examples are the Personal Profile Analysis (PPA) from
Thomas International and the Myers-Briggs Type Inventory (MBTI). This type of testing is
popular as it lends a behavior or personality dimension to the evaluation process.

Personality defines the characteristics that determine the way people think and behave. For
example, the MBTI measures four related dimensions of behavior identified by Carl Jung.
These are introversion/extroversion (IIE), sensing/intuitive (SIN), thinking/feeling (TIF), and
judging/perceiving (lIP). Each of these dimensions is measured on a continuum shown in
figure 18.6.

Introvert 0------------_�Oo_" Extrovert
(inner world of ideas) (Outer world of people and things)

Sensing o-------------.. Intuition
(using the 5 senses, (using 6th sense-big picture)
the facts & data}

Thinking t----------------.. Feeling
(logical, analytical) (emotional, using value judgments)

Perception t-----------_" Judgement
(spontaneous, reactive) (planned, ordered, structured)

Myers-Briggs Behavioral Dimensions Figure 18.6

A person's degree of extroversion or introversion can range from extreme extrovert to
extreme introvert. The personalities at these two extremes are very different: an introvert is
generally concerned with the inner world of concepts and ideas whereas the extrovert is
more concerned with people and the world at large. An individual's MBTI is measured in
terms of all four dimensions. This is done using a structured questionnaire with questions
similar to those in figure 18.7.

Thus, for example, an individual can be "typed" as an ISTJ personality. This means the
individual's preferences are introversion, sensing, thinking and judging. Such a person
would be serious, quiet, practical, orderly, thorough and responsible. Research has shown
that the I.S. population has a different proportion of the various types than the general
population. This is shown in the table which follows. Thus, an individual can be typed, but
so can a project team or even all the analysts in a company. This information can assist
managers at the project or the organization level to bring an appropriate mix of personality
types together, or to know how to handle the mix they have.

Research using the Myers-Briggs instrument (the MBTI) shows that there is a greater
predominance of the STJ personality type in the I.S. industry than has been found in other
professional groups. See figure 18.8.

300 Managing Information Technology Projects

Does it bother you more having things
a) incomplete b) completed

In doing ordinary things, are you more likely to
a) do it the usual way b) do it your own way

Are you mOre often
a) a cool-headed person b) a warm-hearted person

Are you more
a) firm than gentle b) gentle than firm

Myers-Briggs Type Indicator Figure 18.7

The STJ personality is more suited to working on self-contained tasks and will not relate
strongly to teamwork. They will be less inclined to communicate with other people but will
have a strong need for a job that has a high motivating potential. A suitable management
style would be to ensure specific tasks are set (using the WBS approach) and regularly check
the individual's needs concerning future work assignments.

The use of assessment centers is growing in popularity. With this approach, several job
applicants attend a two- or three-day assessment at a hotel run by managers who are skilled
in rating the candidates on a large number of characteristics. Events during the course of the
assessment include management games, psychological testing, decision-making exercises,
role-plays, group problem-solving exercises and written and oral presentations. Assessors
measure applicants' ability, drive and motivation. The applicants may therefore score low on
motivation but high on ability and the assessors will have to balance the two to gain a
comprehensive view.

Affirmative Action Programs
.Many organizations have mounted affirmative action programs to increase the proportion of
certain groups. These programs, designed to ensure proportional representation, are referred
to as affirmative action programs (AAP's). This approach can equally apply to handicapped
workers as well as the socially or educationally disadvantaged. Because this practice is
popular, the project team could be affected in terms of selection and productivity.

Chapter 18 Managing People 301

TYPE

% of General Population % of 1.8. Workers

Distribution of Myers-Briggs Personality Types Figure 18.8

Interview or Audition?
It is said the I.S. business is more sociological than technological. That is, it is more
dependent on people's ability to communicate with each other than their ability to
communicate with machines. It is therefore reasonable that the hiring process should focus
on communication ability. An interesting approach is to use auditions for job candidates.
The interviewee is asked to prepare a ten-minute presentation on some aspect of past work.
It could be about technology issues or a particular problem identified in a past project. The
interviewee chooses the subject and a small audience is assembled, made up of the project
team. Obviously the candidate will be nervous and should be put at ease as soon as possible.
It is important to explain to everyone, including the potential employee, that the audition is .
to see the candidate's communication skills and to give co-workers a say in the selection
process. After the audition each person comments on the suitability of the candidate. This
feedback is invaluable in the hiring decision. The only restriction on the topic should be that
the candidate speaks about something immediately relevant to the work of the organization.

The final decision must now be taken by the appropriate decision-makers. Once employed,
the new employee should attend a company socialization program. A new employee must
understand the appropriate values, norms and behavior patterns existing in the organization.

302 Managing Information Technology Projects

The selection process does not ensure that new employees know the values and culture of
the organization. Socialization is the process by which people acquire the knowledge, skills
and disposition which make them able members of their organization. It is facilitated by
orientation training, informal after~hours social events, assignments to small teams and the
appointment of a mentor. The socialization process assists in building a sense of belonging
in a new employee. It also helps to increase performance and satisfaction in the job, thereby
reducing the turnover and hiring costs. Furthermore, it reduces the anxiety that is often
mentioned by new employees in the early days on the job.

Early job experiences are a major factor in socialization and the first supervisor is often a
key figure. These supervisors serve as role models and the supervisor's expectations can
have a positive influence on the new employee. This influence is called the Pygmalion
Effect. If the supervisor believes that the new employee will do well, this belief will be
conveyed to the employee who will try to live up to these expectations. After the staff
member has been selected and socialized, objectives and action plans should be determined.

Setting Objectives
An objective consists of two elements:

• the statement of a deliverable

• a result standard

For example, the deliverable could be:

"to produce career development plans for a project team"

The result standard could be:

"within three months' time when all initial skills training courses have been completed and
satisfactory marks, (>75%), have been gained"

The result standard makes the objective measurable and is expressed in terms of at least two
of the following:

• Quantity (how much)

• Quality (how well)

• Time (by what time)

• Cost (at what cost)

Any objective can be measured by incorporating the result standard. It should define an end
result and not an action. Thus the statement

"talk to all relevant users"

is unsatisfactory because it does not indicate the expected result from the discussion.

Chapter 18 Managing People 303

Types of Objectives
Two types of objectives may be established for any position:

Maintenance objectives, where a satisfactory performance standard has already been
attained and it is important to maintain this standard

Improvement objectives, which are established where there is a need or opportunity
to improve the results over the current performance standard. An improvement
objective may be achieved through solving a problem, through innovation or through
constant small improvements

An example of a maintenance objective would be "to ensure that computer usage will not in­
crease this year over the previous year." An improvement objective would be "to more effec­
tively utilize computer time by reducing last year's utilization level by 10 percent this year."

Criteria for Objective Setting
Objectives should logically be set at senior management level and cascade down through the
organization. Setting of objectives is the responsibility of the manager who, after involving
the project team members, would specify the minimum performance standard acceptable.
The team member is responsible for developing an action plan with the manager to meet
these objectives. In this way, a high degree of participation can be achieved.

The number of objectives to be set per employee will vary. However, it is important not to
set too many objectives. Typically, the number of improvement objectives should be
somewhere in the range of 5 to 8, depending on complexity.

Generally, objectives should be difficult but attainable. They should call for extra effort or
an improvement in methods. However, there may be rare occasions when a manager may
want to set reasonably easy objectives for a subordinate whose confidence needs a boost. On
balance, it is better to set levels that can be reached and exceeded than to set ones that can
never be achieved. Don't challenge to the point of failure.

Objectives should be reviewed on a regular basis as conditions change. However, only in
extreme circumstances, when it is clear that conditions have changed to the extent that the
objective loses its meaning, should an objective's performance standard be lowered.
Normally, if circumstances change, then the action plan (the method by which the objective
was to be achieved) and not the objective itself should be altered. Only when all alternative
methods and action plans have been considered, and it is clear that none of these will meet
the objective under the changed circumstances, should a performance standard be lowered.
On the other hand, if circumstances become more favorable, then the performance standard
can be revised upward.

Thus:

when conditions change for the worse, change your action plan.

when conditions change for the better, upgrade your objectives.

Action plans need only be established for the major improvement objectives.

304 Managing Information Technology Projects

Developing Action Plans
Once objectives are established, action plans are then developed. The tasks of the action plan
should correspond to those in the WBS. An action plan consists of:

Action steps

Deadlines

Responsibilities

For example, if the objective is to reduce computer usage by 10 percent this year, based on
last year's figures, the output from this objective would be a set of action steps (e.g.,
determining the specific usage of computer time last year and the requirements this year).
These steps would be completed by a certain deadline (a specific date) and would be carried
out by a specific person (e.g., a nominated systems analyst in the project team).

Performance Appraisal
Most large organizations have an annual evaluation system because performance evaluation
is fundamental to organizational effectiveness. The process is often linked to salary in­
creases. Evaluation is a consequence of the way large organizations are structured and jobs
are designed. The assignment of individual responsibility to task performance makes the as­
sessment of individual performance both possible and necessary. Appraisal identifies the
results for which the person is responsible. To operate effectively, large organizations need
information on how well jobs are being performed. Performance appraisal is therefore a sys­
tem to measure and evaluate an employee's job-related behaviors and outcomes to discover
how well an employee is performing on the job and how performance can be improved in
the future. The following criteria should be used:

Performance is measured by results.

Performance is linked to behavior (the things people do that produce the results).

Behavior can be either active or passive (the person can do something or do nothing).
Most of the behavior discussed in performance appraisals is "on the job" behavior.
However, some "off the job" behavior belongs in the appraisal if it affects results.

Performance appraisals should always be restricted to behavior that matters. A rule­
of-thumb question to be asked is "What difference does it make?" If the answer is
"none" then don't evaluate it. Behavior such as chewing gum while working on a
PC; wearing a bow-tie to work or whistling loudly in the corridor do not belong in a
performance appraisal. You will certainly have to discuss these issues if they cause
offense or are against company policy, but they should be resolved at the time of the
incident, not saved up for the annual appraisal.

The Importance of Performance Appraisals
Performance appraisals should be used for the following reasons:

Management development - provides a framework of future employee development
by identifying potential and preparing individuals for future responsibilities

Chapter 18 Managing People 305

Performance measurement - where the relative value of an individual's contribution
to a company is established and specific individual accomplishments are evaluated

Performance improvement - where continued successful performance is encouraged
and weaknesses are measured and ways sought to eliminate these

Compensation - where appropriate pay is determined along with performance.
Ideally this should be done at a different time to the performance appraisal.

• Identi fication of potential - where possible promotion posibilities are identified

• Feedback - gives the employee your perception of performance achieved and how it
fits the plan

Communication - provides the structure for dialogue between the you and the project
team members

Performance Method
• comparative

• absolute

• MBO
• direct

Context
• problem with superiors

• problem with
subordinate

• nature of job

• organizational factors

Appraisal Process
• superior appraisal

• self-appraisal

• peer-appraisal

;.........,r--~lj FEEDBACK 1-

Performance Data
Gathering
• Interviews

• Deliverables

Performance Appraisal System

306 Managing Information Technology Projects

• observation &
coachjng

• planning,
training &
development

• reference &
research

Figure 18.9

The Performance Appraisal System
A general model of the performance appraisal system is shown in figure 18.9.

The performance criteria must first be determined using job analysis. The employee's
contribution can then be evaluated based on his performance and the results specified in the
job analysis. The job analysis will include several performance criteria that determine an
employee's contribution and these will be measured in the performance appraisal.

There are four different kinds of performance appraisal methods:

• comparative

absolute standards

• management by objectives (MBO)

• direct (or objective) indices

These are discussed in detail below.

Comparative Approach
In a simple comparative approach, the project manager ranks the subordinates in order from
best to worst, using performance as the criteria.

A more sophisticated approach is the paired-comparison method in which each subordinate
is compared to every other subordinate one at a time, using a single criteria (such as overall
performance). The subordinate with the greatest number of favorable comparisons is ranked
first and so on. This suggests that no two subordinates perform exactly alike. Although this
may be true, many managers say that differences between subordinates are too small to
distinguish performance.

Another method, the forced distribution method, was designed to overcome this problem.
The manager is allowed to assign a certain proportion of subordinates to each of several
categories on each factor. A common forced distribution scale is divided into five categories.
A fixed percentage of subordinates is allocated to each category. The problem with this
method is the project team may not conform to the fixed percentage. In fact, all comparative
methods assume that there are good and bad performers in all teams. People in teams
sometimes perform in a similar manner, making these approaches difficult to use. This is
especially true in a project team where everyone may be performing at a high level. In this
case, you will have to justify to management that your team has a skewed distribution of
high performers. If you select and motivate well, you should have a skewed distribution!

Absol ute Standards
The absolute standard approach allows managers to evaluate each subordinate's
performance independently of other subordinates and often on several dimensions of
performance. This approach is in common use and measures personality characteristics as
indicators of performance. Frequently used traits include aggressiveness, independence,
maturity and sense of responsibility. The appraisal ratings are quick and easy to complete

Chapter 18 Managing People 307

and are very popular. Unfortunately, the results are sometimes very difficult to convey to
subordinates, especially if they are unfavorable. In addition, the results do not help
subordinates improve their perfonnance.

Management by Objectives
Management by Objectives (or MBO) is a goal-setting method to measure objectives. The
manager first establishes the goals for each subordinate during a time period. In many
organizations, the manager and subordinates work together to establish these goals, thereby
increasing commitment. Once established, the manager monitors performance over the time
period. The subordinate knows what there is to do, what has to be done and what remains to
be done. The manager then compares the actual level of goal attainment against the agreed
goals. Reasons for goals not being met, or goals being exceeded, are explored with the
subordinate. This helps establish possible training needs and also alerts the manager that
organizational issues beyond the control of the subordinate may be affecting performance.
The final step is to decide on new goals and action plans for the new time period.

MBO was originally designed to assist in the development of subordinates. It is especially
useful in jobs where objective measures of performance are difficult. It is a valuable
approach in project management since we mount projects specifically to achieve goals.

Direct Index
The fourth performance evaluation method is the Direct Index approach. This approach
measures performance by objective impersonal criteria, such as productivity, absenteeism
and turnover. For example, a project manager's performance may be evaluated by the
number of team members who quit or by the absenteeism rate. Productivity can be measured
by looking at both the quality and quantity of the manager's work through customer
complaints, creation of system components and quality assurance. This is the most objective
method but the measures must be carefully chosen. The approach can also disfavor valuable
contributors in areas which do not contribute to the measures used. For example, if we
measure development productivity, what about the maintenance programmer?

The Context of Performance Appraisal
Regardless of the performance methods used, there are several factors which may reduce the
effectiveness of the appraisal system. Perhaps the most important is the relationship between
the manager and the subordinate. The manager may encounter four categories of problems:

the manager may not know what employees are doing and may not understand the
work well enough to appraise them fairly. This is true of technical staff who report to
user project managers, or when a manager has a large project team

the manager does not have performance standards for measuring and evaluating the
work. This may lead to unfair evaluations because of variability in standards and
ratings. This is particularly obvious in large organizations when comparing evalua­
tions of subordinates working for different managers

managers may use inappropriate standards, allowing personal values or biases to
replace the organization's values and standards. A frequent occurrence is when a

308 Managing Information Technology Projects

manager evaluates his subordinate similarly on all dimensions of performance, based
on evaluation of one dimension. This is another manifestation of the Halo Effect. Al­
ternatively, managers may give all their subordinates favorable ratings. This is called
an error of leniency. An error of strictness is the opposite of an error of leniency. An
error of central tendency means all subordinates are evaluated as average. These
three errors may occur intentionally or unintentionally. Some managers may, for ex­
ample, intentionally evaluate their best performers as slightly less than excellent to
prevent them from being promoted out of the group.

Many of the above errors can be minimized if:

Each dimension being measured addresses a single job activity

The manager appraising the job can observe the behavior of the individual first-hand

Terms like "average" are not used on a rating scale

The person appraising the jobs does not have to evaluate large groups of employees

Training is given to all individuals who have to do appraisals

The dimensions being evaluated are meaningful, clearly stated and important

The subordinates may also have problems with the performance appraisal. For example, they
may not know what is expected of them, or they may not be able to do what is expected of
them. Thus they may have the ability but just don't know how to apply it.

Apart from the manager-subordinate relationship, the nature of the job is also an important
factor. In many jobs the quality or quantity of performance may be outside the subordinate's
control. This is especially true in many project tasks which are highly interdependent and
where many people are involved in the outcome. In these circumstances it is difficult to
separate the individual's performance from that of the group.

As employees become more unionized, performance appraisals may disappear completely as
unions have traditionally favored seniority to determine salary packages - similar to
government employees. This is a negative trend where performance is not recognized or
rewarded and will ultimately lead to lack of motivation and a drop in productivity.

The Appraisal Process
The appraisal process is a data-gathering exercise. The appraisal data can be generated by
the manager or through self-appraisal by the appraisee. When the manager appraises the
individual, the process is often seen as "one way", making the subordinate feel defensive.
Self-appraisal makes a subordinate participate in the evaluation process and become more
involved and committed to the outcome. Done in isolation, the self-appraisal approach will
have biases and distortions.

A further method of gathering performance data is through interviews. This can be highly
productive if the climate is correct and the individuals both participate in setting goals and
determining job responsibilities as well as deciding on career development measures.

Chapter 18 Managing People 309

Feedback of Performance Results
Feedback is an integral part of any learning experience and is the process whereby the
subordinate is told how to improve performance through an objective assessment of his
present position. It should be given immediately after the performance appraisal itself and is
therefore best discussed in the appraisal interview. Clearly, the manager will find discussing
successes far easier than discussing failures.

Managers feel that negative feedback can lead to poorer performance rather than better.
Often negative feedback is confused with criticism. The latter is evaluative, implying "good­
ness" or "badness", whereas feedback is descriptive. Feedback provides the subordinate with
information and data which can be used to perform a self-evaluation. Feedback, given cor­
rectly, should not create a defensive reaction. However, where the appraisal system is tightly
coupled to the salary system, defensive reactions will dominate and handling these discus­
sions will require extra sensitivity.

Feedback is not always easy to provide but nevertheless effective feedback is essential.
Effective feedback is specific rather than general. Specific instances must be cited rather
than generalizations. In addition effective feedback is focused on behavior rather than on
the person. It is important to refer to what a person does rather than to what that person
seems to be. A manager may therefore say that a person talked more than anyone else at a
meeting, rather than he or she is a loud-mouth. The former allows for the possibility of
change, the latter implies a fixed personality trait. Effective feedback should be given to
help, not to hurt. The interview should include information 1.0 share rather than merely
giving advice. The person receiving information can then decide for himself on the changes
required. Effective feedback should be given immediately after an incident and not saved up
for a particular appraisal time. Effective feedback should be formalized to ensure clear
communication.

No matter what the intention, therefore, poor feedback is often seen as "threatening" and can
thus be the subject of considerable distortion or misinterpretation. Make sure yours is
objective and honest!

Matching the Purpose and Method
The last step in the performance appraisal system is deciding on the required action. The five
broad categories where action may be required are:

Motivating subordinates to perform well

Providing data for management decisions

Helping in human resource planning, training and development

Encouraging managers to observe and coach their subordinates

Providing reference and research data.

Although all the methods mentioned handle all these categories to a lesser or greater extent,
the MBO method relates more closely to the needs of the I.S. industry than the others.

310 Managing Information Technology Projects

Ineffective Performance
Employees do not always perform the way managers want them to. Sometimes this
ineffective performance is a reaction to the work environment and sometimes it is the result
of being prevented from reaching career goals. Regardless of the cause, telling people the
truth about their ineffective performance is difficult and therefore often avoided. The biggest
problem with ineffective performance is determining what it is. Ineffective performance can
be caused by personal problems or be environmental. For example, there may be a general
lack of motivation due to the wrong selection procedure or poor working environment. The
internal work environment may also be at fault and this is linked to the management style of
the project manager. Often the "nice guy" approach, i.e., the manager who likes people and
does not want to hurt their feelings, is infinitely inferior to the manager who pushes
subordinates to do their jobs better'but lacks the personal warmth exhibited by the other
manager.

Ineffective performance is difficult to handle and therefore the easiest way out is to ignore it.
Some action must be taken to handle the problem and could involve several distinct steps,
starting off with coaching and feedback. If no improvement is obtained, we may issue a
verbal warning, followed by formal written warnings, eventually ending up with a dismissal.

Staff Motivation
Motivation comes from the Latin "movere", meaning "to move". A manager does not see
motivation, just as a manager does not see thinking, perceiving or learning. All that a
manager sees is a change in behavior. To explain these changes in behavior, managers make
inferences about the psychological processes; thus motivation can be seen as an inner
striving in terms of needs, desires, drives, motives and so on. It is an inner state that activates
or moves. Managers often observe behavior and make inferences about motivation. If an
employee displays the following type of behavior, they are considered to be motivated:

• Is regularly on the job

Puts forward his best effort at all times

Is always trying to improve performance on the job

• Directing his efforts toward accomplishing meaningful goals

Managers observe the presence of these aspects and make inferences about whether or not
an employee is motivated. All behavior is in some way motivated as people have to have a
reason for doing what they do. Human behavior is directed toward certain goals and
objectives. Such goal-directed behavior relates to the satisfaction of a need - and need is a
physiological, psychological or sociological desire that can be satisfied by reaching a
specific goal.

An unsatisfied need or desire initiates motivation by causing a tension in the individual
which leads the person to engage in behavior to satisfy that need and thus reduce the tension.
A thirsty person needs water, and is driven to satisfy that need and is motivated by desire for
water to achieve that need. Depending on how well the goal is accomplished, the inner state
is modified either completely or partially. Thus motivation starts with an unsatisfied inner­
state condition and ends with movement to release that unsatisfied condition with goal-

Chapter 18 Managing People 311

directed behavior as a part of this process.

It is important to note that motivation and performance are two distinct concepts. One
management concern is to ensure that employees accomplish significant work goals.
Successfully accomplishing these goals is a result of a number of factors, including the
employee's commitment to the job and his ability to do the job. It is essential for a manager
to see that some of the factors are internal and others are external to the employee.
Otherwise a manager can reach an incorrect decision about motivation. For example, if a
manager notices a drop in performance and decides to increase pay to overcome this
decrease in performance, the reaction may be incorrect. as the drop in performance may be
simply due to domestic problems or sickness. Wrong diagnosis of motivational problems are
common in the I.S. industry.

Motivation theories have evolved over the past decades. The early management theorists
regarded money as the main motivator. Most behavioral scientists agree that human beings
are motivated by the desire to satisfy many needs, including money. However, there is a
wide difference of opinion as to what these needs are. For example, Maslow developed a
theory of motivation called the Needs Hierarchy, shown in figure 18.10. This approach is
based on two important assumptions: First, each person's needs depend on what the person
already has. Only needs not satisfied will influence the behavior, as a satisfied need cannot
influence behavior. Second, needs are arranged in a hierarchy of importance. Once one level
is satisfied, another emerges and requires attention. Maslow believed five levels of needs
exist. These needs, as shown in the following diagram, are physiological, safety, social,
esteem and finally self-actualization. There may always be a proportion of a level that is left
unsatisfied.

Safety

Social

Esteem

Self-actualization
Self-fulfillment, max. skill potential,
personal growth
Needs: Challenging job,
allow risk-taking, high creativity

Status, appreCiation, confidence
Needs: Recognition, job title, responsibillty,
Important job assignments

Affection, acceptance, friendship
Needs: Stable group, facilities to socialize

Security. protection from physical harm
Needs: Safe work conditions, job security, fringe benefits (medical, etc.)

Maslow's Hierarchy of Needs Figure 18. 10

312 Managing Information Technology Projects

Physiological needs relate to the basic requirements of pay and a good office environment.
These will dominate when left unsatisfied. At the next level, safety needs include job
security. We all know how demotivated people are when there is a possibility of retrench­
ment. The third level is social need which links to tearn-building and social functions in the
organization. Esteem needs, the fourth level, comprise both the awareness of the person's
importance to others (self-esteem) and the actual esteem of others. Satisfying this need leads
to self-confidence and prestige. Recognizing good performers and permitting employees to
work on their own to complete challenging and meaningful jobs will help to satisfy this
need. The top level in the hierarchy is self-actualization. Maslow describes this as becoming
more and more what one is - to become everything one is capable of becoming. Satisfying
this need enables the individual to fully realize his potential. The organization climate re­
quired to satisfy this need includes the encouragement of creativity and allowing risk-taking
in decision-making. While Maslow's Hierarchy of Needs is very acceptable to managers,
there is little evidence to support it's accuracy.

Frederick Herzberg developed his motivation theory in the 1960's, based on a study of en­
gineers and accountants. This is called the two-factor theory of motivation, or the
Motivation-Hygiene Theory. Herzberg divides the factors which motivate employees into
two main categories: hygiene factors and motivating factors. Hygiene factors (or main­
tenance factors) are so called because they relate to the job environment and not to the job it­
self. In the same way as public hygienic measures do not make people healthy but prevent
them from being unhealthy, so these factors do not make people happy and satisfied at work,
but they do prevent them from being unhappy and dissatisfied.

The main hygiene factors are:

• company policies and administration

• type of supervision

working conditions

• interpersonal relations

money status and security

The motivating factors, on the other hand, are found in the job itself and include:

opportunities for achievement, i.e., the feeling of personal accomplishment at
completing a job, solving a problem and seeing the results of one's efforts

recognition for a job well done

• responsibility and authority, which is the degree to which a person has control over
his own job and responsibility for the work of others

interest in the job itself

growth, which is the chance to learn new skills and knowledge to advance to a more
challenging job

Both hygiene and motivational needs must be satisfied. One need cannot replace the other,
but rather a balance is needed between the two. It is important to understand that hygiene

Chapter 18 Managing People 313

factors refer to how you treat an employee and motivating factors refer to how you use an
employee. Both factors have equal importance. The hygiene factors have a specific function
of stopping dissatisfaction and subsequent reduction in output, while the motivating factors
have the specific function of improving performance. Note also that hygiene factors have
escalating endpoints, i.e., there is no one level of hygiene factor that will keep employees
satisfied forever. People become accustomed to a level fairly quickly and subsequently want
more. Consider pay as a motivator. There is no pay level that will keep employees satisfied
indefinitely. A hygiene factor must be given for a specific purpose, i.e., where there is a need
for it. Hygiene factors should be used to remove a specific dissatisfaction. If this is not done,
we merely increase the source of potential dissatisfaction. Motivating behavior must be
reinforced with a motivator.

Supplying the Motivators
Job enrichment is a practical method of applying motivators. Job enrichment attempts to
restructure the job to give the employee greater responsibility, increased opportunity for
achievement, recognition for achievement and more interesting work. Job enrichment should
be separated from job enlargement, which involves giving an employee more tasks to do
which require similar abilities. Herzberg feels that this activity merely enlarges the
meaninglessness of the job. However, it can sometimes temporarily reduce boredom and
broaden the employee's perspective, thereby preparing him for job enrichment. To increase
job enrichment, introduce more difficult tasks not previously handled. Or give a complete
unit of work, which is both meaningful and large, along with as much autonomy as possible.

Alternatively provide the opportunity to learn and increase knowledge and skills. Most of us
want to achieve and grow. When an individual achieves, give more responsible tasks as
recognition of those achievements. Good work should always be praised and promotion
should be dependent upon personal effort and successful performance.

Another way to enrich a job is to increase responsibility and authority. This can be done with
capable employees by removing certain controls, such as continually checking their work.
Delegate as much as possible and make individuals accountable for their own work. This ac­
countability can also involve the training and development of other staff. Job enrichment
means providing more interesting work and a larger variety of tasks. The key to job enrich­
ment is to give employees a complete job, involving planning, organizing, doing and con­
trolling. This effectively means that individuals set their own objectives, determine
resources, set priorities, implement the plan, followed by measuring, evaluating and correct­
ing their own performance. Many jobs only involve the doing stage and incorporate very lit­
tle planning and controlling. It is the control phase that tells the individual how effective the
plan was and allows him to re-plan. The control phase provides direct feedback. Feedback
gives work its meaning and absence of feedback is a common cause of complaint amongst
I.S. professionals.

Motivating I.S. Personnel
Motivation of I.S. personnel has been researched by Dr. Daniel Couger, a distinguished
professor at the University of Colorado. His national and international studies, carried out
since 1980, are based on a model of motivation developed by psychologists in the early
1970' s. He also uses Herzberg's theory. In the many studies done throughout the world,
Couger identifies the most important motivating factor in the I.S. industry, irrespective of

314 Managing Information Technology Projects

age, sex, position, job and culture, is The Job Itself. Based on this, he uses the Job
Characteristics Model (figure 18.11) to identify motivation factors.

Job Characteristics

iety Skill-var

Task Ide

Task Si

ntity

gnificance

Autonom y

Feedbac k

L

-----..

J-

1--

Critical Psychological
States

Experienced
meaningfulness -----..
of work

J

Experienced
responsibility for 1-outcomes of work

Knowledge of the 1-
actual results of
work activities

Personal and
Work Outcomes

High work
motivation

High quality
work performance

High satisfaction
with the work

Low turnover
and absenteeism

i
Employee Growth Need Strength

Motivating Potential of Job Figure 18.11

The core job dimensions specified in the model are those most sensitive to motivating staff.
These comprise skill variety, task identity, task significance, autonomy and feedback. These
are the aspects of the work itself found to be most important in motivating employees. The
presence of these five key variables contribute to an employee's feeling of meaningfulness
from the work, responsibility for its outcome and knowledge of the results of the work. By
addressing these factors a job's motivating potential can be enhanced. The personal and
work outcomes of these job dimensions leads to high motivation, high quality work and high
performance of the individual, with the possible outcome of low turnover and absenteeism.
All these outcomes would be highly beneficial to any organization. A questionnaire is used
to measure these dimensions for a particular individuaL The completed questionnaire
identifies an employee's Growth Need Strength (GNS). This is a measure of the career
growth and challenge required by the individual. Obviously some employees have a higher
growth need than others and want "rich" jobs to achieve these needs, while others do not

Chapter 1 e Managing People 315

have the same requirements. The l.S. industry appears to attract people with a significantly
higher GNS than any other professional group. This means that an individual's need for
growth and challenge should be a project manager's focus when considering new tasks.

The research also identifies the Social Need Strength (SNS) of individuals. This is the
employee's need for social interaction. Couger has shown that analysts and programmers
have the lowest need for social interaction of all the professions, although they also have the
highest need for growth. This conclusion is based on a study of 500 different occupations.
The SNS is the individual's need to interact with others. Thus, given the choice of working
on their PC or attending a meeting, it looks like the analyst would rather do the former! This
is a problem if one considers the high interaction needed with users and the project team.
However, the project manager can use the person's high GNS and send him on interpersonal
training courses to develop these skills. The high GNS will ensure the person develops these
skills even though they may feel a little uncomfortable.

The five core job dimensions determine the Motivating Potential Score (MPS) of the job.
This is a measure of the potential of the current job to motivate the individual. The MPS of
the job is then compared to the GNS of the individual. If there is a major discrepancy
between the MPS and GNS, then there is a motivation problem that requires attention. In
large companies, it is increasingly difficult to motivate staff because of the increased levels
of management and the problems with communication. Where there is a mismatch, the job
dimensions (skill variety, task identity, task significance, autonomy and feedback) should be
investigated. Deficient areas are identified and jobs re-specified or formal training courses
recommended. Managers must ensure that jobs are matched to individual's needs and
abilities - a small investment compared to the resultant increase in individual productivity. In
an industry notorious for staff shortages, high staff turnover and low productivity,
improvements through highly motivated staff are worth considering.

Team Selection and Productivity
LS. organizations use the word "team" very loosely. Any group of people who are brought
together to perform a common task is called a team. What these groups of people have
miSSing is a definition of group success or an identifiable group mission. When a group of
people "jel" together to form a team, the whole is greater than the sum of the parts. The
individuals in a jelled team seem to enjoy themselves and the likelihood of successful
completion of the task goes up dramatically. Managing such a team is a pleasure as the team
has its own momentum and tends to be self-motivating. How a manager can achieve this is
obviously of great interest to us all! If one thinks of a top sports team, one can ask why this
team is consistently so good. One aspect is quite clear - the team has a common goal and that
goal is of ultimate importance to each member.

A team goal is not necessarily the same as a corporate goal. A normal condition of
employment is to accept and follow company goals. However, this is slightly different to a
team goaL While senior management may be very excited about increasing profits by a
certain percentage, the professionals in the l.S. department probably consider these
objectives as being very low on their priority list. However, when a team decides on a goal
then things start to happen. The achievement of the goal leads to joint success and personal
pleasure in achieving the goal as a team.

What the project manager has to do is to link organizational goals to the team goal. Compare
this with the goals in sports which are totally arbitrary. Whether West Germany or Argentina

316 Managing Information Technology Projects

get more balls between the posts is a totally arbitrary thing, yet a large number of people get
very involved and emotional about the outcome! Their involvement is a function of the
social units they belong to. Those on the periphery of these social units may show some
interest in whether the teams succeed or fail, but their interests are minimal compared to
those of the social units. The people involved in those social units are so psyched up that one
would almost see it as an overreaction. What managers have to realize is that although
individuals perform certain tasks and attain individual goals, the team is the ideal device to
get people all pulling in the same direction.

A team that is working well together has a low turnover and a strong sense of identity. These
teams stay together over lunch or at their favorite pub. They also have a sense of elitism and
feel they are part of something unique. A further distinction is that the team has a joint
ownership of the product that they are building. They want their names attached to the
product and are eager to discuss their successes and failures. This leads to an enjoyment thal
each team member gets from working in the team, where the interactions are confident and
healthy. Note the difference here between a team and a clique. The clique represents a threat
to an organization, whereas the team may be somewhat irritating and exclusive, but it does
assist the company in achieving its objectives.

So how is a strong and jelled team built? One very important measure is trust. Obviously,
you might have more experience and better judgment than your staff. What is important is to
allow staff to take responsibility and to sometimes make mistakes. Allowing staff to make
mistakes means they can apply judgment to a situation and means they know you trust their
ability to make decisions. People who feel they cannot be trusted have little interest in merg­
ing into a productive team. Another inhibitor is paperwork. The advent of structured
methodologies has led to a considerable increase in paperwork needed to develop and install
an information system. Paperwork generally stops people from doing productive work. Fur­
thermore, making products under ridiculous cost pressures (which prevent quality) cannot
create a sense of accomplishmentin a team. When the eventual inferior product is produced,
the team members will try desperately to go in different directions and distance themselves
from the product and the team. The same applies to artificial project deadlines, where the
date is often impossible to meet, so that successful completion is totally impossible.

Another major performance inhibitor is the work environment. Research has shown that
people can improve their performance considerably if they have a quiet work area. This is
difficult in open-plan areas which have high noise levels and lots of interruptions. You
should look for ways to get the project team into a self-contained area to reduce the
disruptions and increase productivity.

I.S. organizations that achieve high quality products are not just lucky. They follow good
healthy management strategies. The first one is to get a handle on qUality. However, turning
out quality products costs money and strong teams tend to produce better products than the
user is expecting. Quality products have to be protected from ridiculous time-scales and
naive budgets. If the manager is really keen to make the team more productive and goal­
oriented he will have to give up some of his control. This distinguishes the good manager
from the poor one. All it takes is everyone moving in the same direction (i.e., following the
same objective) and then firing them up to do it. The team that works well together is often
made up of individuals with a lot in common. However, this does not mean the team is
totally homogeneous. Often different "personality types" will improve the odds of the team
working well together.

Chapter 18 Managing People 317

A fully functioning team is energized and takes great delight in achieving deadlines.

Personality Difference in Teams
When we discussed motivation, the growth need strength (GNS) and social need strength
(SNS) of I.S. personnel were analyzed. The conclusion reached was that systems develop­
ment staff have a very high growth need strength and a very low social need strength com­
pared to other professionals. In terms of the Myers-Briggs Type Indicator this means that
systems development staff are generally introverted, sensing, thinking and judgmental.
These characteristics imply that development staff are more suited to working on self­
contained projects. Project managers should recognize that they are more likely to be man­
aging a group of individuals rather than a team. Because of the low SNS, people may be less
inclined to communicate than the users they will have to deal with. On the other hand, a high
GNS means that the individual will require a job that gives him a high motivating environ­
ment.

If systems development staff are essentially thinking types as opposed to feeling types, then
this lack of feeling in the team can be an important contributor to the failure of the project.
Research has shown that a mix of thinking and feeling personality types leads to a better
outcome for the project and a more successful team in general. The feeling types in the
successful projects should be distributed among the systems development staff and the end­
user representatives in the project structure.

Team Size
The days oflarge monolithic project teams are over. Most organizations break large projects
into a series of smaller self-contained ones. These should be small enough to be developed
by a project team of five or six staff over six-month time periods. Note that this team does
not work as a true team in practice. If properly planned, much of the work can be done in
self-contained units by individuals. The purpose of grouping the work is to ensure that
everyone is committed to achieving the overall objective of developing a successful system
and the team leader must ensure that individual goals are aligned with those of the team.

Individuals brought together in a systems development team do not form a close-knit unit
immediately. Teams go through their own stages of development as shown in figure 18.12.

The stages in the team development process are characterized by different behavior and
team performance. The project manager must recognize and reduce the impact of the earlier
phases of team development so that the team can progress as quickly as possible to the more
productive phases. It has been found that teams made up of unlike individual personalities
work better during the earlier project phases when the amount of routine work is small. Such
teams are good for creative, problem-solving tasks and for tasks involving complex
decision-making. This is because the team members stimulate each other and produce a high
level of performance and quality. Teams made up of unlike individuals can however create a
great deal of conflict.

Teams consisting of people of similar personalities work best on simple routine tasks. Thus
teams made up of these people will be more appropriate during the later development phases
when routine is greatest. The formation of a balanced team requires consideration of more
than just the technical expertise. The personality of individual members and the need to

318 Managing Information Technology Projects

Orientation Stage

Establish structure and rules
Clarify team member relationships
Identify responsibilities
Develop a plan to achieve goals

Internal Problem-solving Stage

Resolve interpersonal conflict
Further clarify rules and goals
Develop a participative climate

~~h and P;oductiVity Stage

Direct team activity toward goals
Provide and get feedback
Share ideas-growing cohesion
Individuals feel good about each other

t

Forming

Storming

Norming

Evaluation and Control Stage

More feedback and evaluation
Adherence to team norms
Roles of team strengthened

Performing

Strong team motivation to shared goals

Team Formation Figure 18. 12

change the team composition in the later stages of the development project are also
important factors.

Career Development
Beeause typical 1.5. professionals have high growth needs and low social needs, and often
leave their jobs because of lack of career growth, career planning is vital.

The concept of career has many meanings. The popular one is the notion of upward mobility
- making more money, having increased status, more power and more responsibility. A
useful definition of career is

the individually perceived sequence of attitudes and behaviors
associated with work-related experiences and activities
over the span of the person's life.

The term "career" does not imply success or failure, except in the judgment of the
individual. It is also interesting that a career consists of both attitudes and behaviors. A

Chapter 18 Managing People 319

person's personal life also plays an important role in a career. For example, the attitudes of a
40-year-old mid-career project manager concerning a possible promotion to a systems
development manager can be very different than a project manager nearing retirement. A
batchelor's reaction to a promotion involving moving from one location to another is likely
to be different than a father with school-age children.

Career Effectiveness
Career effectiveness is a concern of both the organization and the individual and can be
measured by performance and by attitudes. Sometimes an organization does not fully
recognize performance because it has a staff-appraisal system that cannot reward at the
appropriate time. The organization may also feel disappointed with an employee's
performance because the individual is satisfied with career perfonnance while the
organization considers the person as underachieving.

Effective careers in project management are more likely for individuals with high levels of
performance, as well as positive career attitudes, adaptability and clear career goals.

Career Stages
Individuals go through distinct career stages. These are the prework stage (school and
tertiary education); the initial work stage (moving from job to job); the stable work stage
(maintaining one job) and the retirement stage (leaving active employment). Needs and
expectations change through these stages. Employees tend to be very concerned about
secwity in the early part of the stable work stage (called the establishment substage), but are
more concerned with advancement in the latter part of the same stage (called the
advancement substage). These two substages nonnally span the ages between 25 and 45.

Two career stages are critical - namely the recent hiree and the mid-career person. Early
career difficulties relate to frustration with a low-demanding job and poor performance
feedback. To overcome these problems, "excellent" companies are using "realistic job
previews" where recruits are given opportunities to learn about the benefits and the
drawbacks of the job and the organization before being employed. This approach has helped
to reduce initial job frustration. Other approaches include giving new employees
challenging, initial assignments and allocating them to demanding supervisors.

The mid-career employee is normally established at work and in society. Often these
employees have reached a career plateau and feel stifled in their jobs. This can lead to
depression and ill health and ultimately to resignation. These problems can be addressed by
professional counseling or lateral transfers to user areas.

1.5. Careers
Traditionally, there have been four career paths in a typical 1.S. organization, namely: opera­
tions, systems, applications and specialists. Most people entering the operations path seem to
stay in the Facilities area. Those entering the applications programming path move into the
systems area. This makes the applications path, and especially the analyst/programmer posi­
tion, an important transition point in all I.S. careers. Most people entering the specialist path
(e.g., systems programmer) seem to stay in that technically-oriented area. Programmers and

320 Managing Information Technology Projects

analysts seem willing to move in and out of different career paths frequently. This implies
two things. First, it is possible that they do not understand which career is the most suitable.
Second, it is likely that organizations lack flexible career paths and individuals move in and
out of different paths by joining different organizations.

A trainee joining an organization will see a career path over a period of time. This may not
be suitable for some, as it is probably aimed at the average performer. An alternative is to
use a career model developed in the company which removes this "straitjacket" approach. A
career model is designed to guide the organization and provide a road map that shows the
various routes and destinations that an individual can follow. The road map can be used by
the manager and the individual to decide on specific development strategies in the short
term. A typical process is where a trainee can move through stages and grow in terms of
technical, managerial, communications and company skills and knowledge. Each stage can
have several job levels which require more demanding technical work or alternatively
managerial function.

The usual progression involves an initial trainee moving from programming through
analysis, into project management and then into senior LS. management pOSitions. The first
real management level encountered is that of project manager and this is an important step.
Moving into project management is a critical career choice as this now brands the individual
as a manager as opposed to a technical professional. This is because managing people
becomes more important than managing technology. Note how different these jobs are and
the difficulty individuals must have in following such a career path - especially if they were
recruited solely for their technical ability.

During each of the career stages there are several performance checkpoints that must be
discussed. These checkpoints can be standard performance appraisals where strengths and
weaknesses can be highlighted, and action plans developed. Only once a particular career
stage has been mastered, can the next career move be discussed. At this point the
subordinate's interest is the controlling aspect in the career decision along with the
manager's judgment of the subordinate's readiness and, of course, the organization's need.
None of these facts can be overlooked, least of all the possibility that the individual may
have plateaued for a time or for good. The individual may even be better suited to a
completely different job. If the decision is to move up rather than out or not move, the career
decision discussion then focuses on the preparation necessary for the selected upward move.
This may require training or secondments to ensure readiness.

Although a career plan does not have a time frame, most expectations by companies and
individuals reveal that the lower stages should take between one and three years. Thus an
entry-level trainee could become a project manager in as little as five years on a fast track,
although seven to ten years would be the normal progression. Not every employee is
expected to move through the stages at this speed and reach the top. What is needed in every
organization is a set of career paths to cover a technical orientation and a management
orientation. These paths should be continually assessed and should have typical time-frames
for lateral and horizontal movement.

Leadership
Being a good project manager requires more than management - it requires leadership.

Chapter 18 Managing People 321

Leadership is thal quality of an individual that motivates others
to willingly participate to achieve goals
which they come to share with the leader

Whereas a manager uses his position to get results, the leader gets results through coopera­
tion and free will by influencing staff. In project teams, a common goal is developed and
plans are created to achieve the goal. The strong project leader must focus on three areas -
the task needs, the people needs and the team needs. All three must be satisfied to ensure
success. Blanchard, Zigarmi and Zigarmi present a model of leadership (figure 18.13) to
help the manager with different staff situations. They claim a manager's approach should
depend on the managed individual's maturity in the job. At the outset, when the subordinate
lacks experience and ability to complete a task, a "directing" approach is used with strong
controls. As the subordinate takes on more responsibility, so the leader gives him more
authority to make decisions, adopting a "coaching" style. In the third quadrant, the in­
dividual is encouraged to become self-sufficient, with the support of the manager. Once into
the fourth quadrant of the model, subordinates are allowed to manage themselves and
resolve their own conflicts.

High

1
II:
o
:>
c:(
:I:
W
m
W
>
i=
II:
o
Il.
Il.
::J
en

j

High Supportive
and

Low Directive
Behavior

S3

SUPPORTING

Low Supportive
and

Low Directive
Behavior

S4

DELEGATING

High Directive
and

High Supportive
Behavior

S2

COACHING

High Directive
and

Low Supportive
Behavior

S1

DIRECTING

Low 1----- DIRECTIVE BEHAVIOR .. High

Source: Blanchard, Zigarmi, and Zigarmi, 1985.

Situational Leadership Figure 18. 13

We should realize that an employee can be simultaneously in several quadrants with respect
to different activities. For example, an Analyst/Programmer could be in quadrant 4 as
regards designing a program, in quadrant 2 as regards writing user documentation, and in
quadrant 1 in terms of preparing and giving a presentation to users.

Figure from pg. 74 Leaduship and 1M On< Mirwl< Manasu. by Kenneth Blanchard. PIl.D .• Patricia Zigarmi. &1.0 .• and Orea Zigarmi. EdD .•
Copyright 1985 by Blanchard Management Corporation. By permission of William Morrow and Co .• Inc .• New York. New York.

322 Managing Information Technology Projects

The model assumes that managers can switch their leadership styles dynamically - not an
easy thing to do! The model reinforces the idea that, as effective managers, we must
delegate work to staff as soon as possible in their careers and provide them with enough
support to achieve high-performance goals. This wlll make them competent to grow in their
careers - and will make you a successful project manager.

Chapter 18 Managing People 323

Case Questions

MyWay Organizer
018.1
What type of personality profile might suit the role of an analyst programmer in the software
house environment developing the Organizer product? Why? (10 mins)

018.2
Draft personal objectives for an analyst recruited to your team. Her name is Theresa. She has
been with the company for two years, previously working in the Medical Practice
Administration package team. She has a bachelor's degree in computer science, and five
years' experience overall. She is people-oriented and outgoing, getting on well with users
and colleagues alike. She can be forgetful and ignore (or dismiss) detail which later turns out
to be important. She has previously worked only on unix-based systems and has no
experience of PC systems, LANS or client server. Graphical User Interfaces are also new to
her. Her responsibilities on the team will be the specification of the second release of the
Organizer, including the incorporation of an Internet access module. For each objective, list
how you would assess or measure achievement. (15 mins)

018.3
Divide yourselves into groups of four, with access to an IBM compatible personal computer
for each group. Run the software provided by the instructor to determine the MBTI profile
of each member in the group. Summarize the profiles of the four individuals on one graph.
Identify strengths and weaknesses in the combination of profiles. (30 mins)

Gleam Stores
018.4
What type of individual would be suitable to lead the Gleam Stores implementation project
as it spreads out to install the new system in all branches country-wide. What attributes
would assist or hinder this person in achieving a successful implementation? Can you
suggest suitable MBTI profiles? (20 mins)

324 Managing Information Technology Projects

Handover Trust
018.5
One of the client server projects has run into severe difficulties. The project team complains
that the current project manager (Gordon) is autocratic and domineering, as well as a "male
chauvinist pig". He is a senior and highly regarded person among the Handover middle
management fraternity. The complaints have come from a business analyst (Trisha) and a
user interface designer/prototyper (Cecil) on the team. Gordon previously ran the system
software group which until recently also looked after the DBA function. He has 22 years'
experience, dating back to early mainframes programmed in assembler.

You have spoken to him and he, in turn, has expressed his dissatisfaction with the team.
"These youngsters don't know what goes on inside a machine - they write horribly
inefficient code. They also haven't learned to really work yet."

What might the sources of conflict be in this situation? How can you resolve things so that
personal relationships and feelings are not damaged and the project can get back on track?

(20 mins)

ThoughtWell Books
018.6
Use the definitions of Job Characteristics provided by the instructor. Consider the team
which you chose to tackle the ThoughtWell Project in Q5.5. By considering the team
members and the characteristics, determine what you as project leader can do to increase the
motivating potential of each team member's job or role. (30 mins)

018.7
The productivity of team members working on-site at ThoughtWell is substantially lower
than that which is normally delivered at your offices, even for the same individuals. This has
led to overruns relative to original estimates. The team is also frustrated by the amount of
pressure they are under at this late stage of the project. They complain that they cannot
concentrate in the kiosk provided as an office at ThoughtWell, where there are several order­
taking telephones and clerks in and out to retrieve call orders. Even though they are working
ten hours a day, they claim that they only get about two uninterrupted hours. The people on­
site are finding that Jane frequently changes her mind about system features. They find this
very frustrating. How can you address this situation immediately and prevent any further
problems on the subsequent phase of the project? (40 mins)

Chapter 18 Managing People 325

1 9 Implementation

Preparing for Implementation
The completed system has to be handed over and installed in the user's premises. This
means preparing the work environment, doing the data conversion, interfacing the system
into the user's work procedures and tuning the system. The planning for this was all done in
the systems development phase when activities like user training, procedure development,
implementation planning and data conversion planning were all completed.

The implementation phase is the most difficult one, because a technical product now has to
be fitted into a human organization. The new system has already led to suspicion and fear
while under development. Now it is going to change the way people work and think. This
stage must not be played down but must be completed in a positive, enthusiastic manner.

Site preparation does not necessarily involve false floors, air conditioning and clean
electrical power. However, even a computer terminal on a desk linked to the outside world
needs careful consideration. Someone has to use this equipment effectively as a major part
of the information system that has just been developed, so put some effort into locating it
correctly! Systems have failed because of the poor work setting of equipment.

Conversion of the data involves setting up the files and databases needed by the system. This
area is problematical because one-off programs have to be written, tested and implemented
to capture manual and automated data from various sources into the system. Obviously the
data take-on must be complete and validated. The controls and checking to do this exercise
must not be underestimated.

Although a lot of documentation has already been produced (including user manuals), user
operating procedures are needed to guide the user in the proper use of the system. These
procedures include how to start up and close down the system, how to recover from
problems and whom to contact when problems cannot be resolved. Despite the training and
documentation the user has now received, there will still be a lot of hand-holding required in
the early working sessions before user competence levels are reached. These tasks take time
and patience - both of which are in short supply at this stage of the project!

The introduction of the system can be implemented using different strategies, depending on
cost, risk and the users.

Chapter 19 Implementation 327

An immediate cutover (or "big bang") from the old to the new system, as shown in figure
19.1, requires a high degree of confidence in the new system by everyone.

"Big Bang'; approach

Parallel Run

Implementation Strategies Figure 19.1

Although this is the least costly and fastest method, it usually creates a period of chaos in the
organization which can lead to total rejection of the system. Because, once implemented,
there is no going back, this method requires considerable planning and is often used when
replacing mainframe computers or large computer components. However, because it is a
very high-risk option, the project manager should avoid it unless there is no alternative.

Parallel running of the old and new system, shown in figure 19.1, is when both systems are
run together over a period of some months.

This popular method is used to ensure that the results from the new system are reliable by
reconciling output from one with the other. If things go wrong, the old system is still
available, and both systems can continue to be run until the new system works correctly in
the user's hands. The major disadvantage is that there is a cost attached to this method, but
more importantly, there is a considerable increase in the amount of work required by the
user and also considerable confusion trying to run two different systems together.

Phased implementation, as shown in figure 19.2, is when a system can be divided logically
into subsystems and implemented as such.

Each subsystem can be introduced and assimilated into the organization before the next one
is introduced. This reduces disruption and sometimes lowers the cost of implementation.

A further option is the pilot implementation approach. This is particularly useful where
there are multiple sites. The new system is implemented at a site were the users are more
receptive to change. Teething problems are resolved before implementing at the other sites.
The users at the pilot site automatically become the salesmen for the new system.

328 Managing Information Technology Projects

Old System

Could be functionality based, geographically based or number of users based

Phased Approach Figure 19.2

Having determined the implementation method, the final consideration is timing. Most
accounting systems have to be implemented after the completion of a month-end, but
quarter- and year-ends should be avoided if possible due to the extra workload and extra
problems that could occur.

Implementation Problems
There are three main reasons why systems fail at this late stage of the project - a poor quality
system, a lack of commitment to implement the system from user management, and
resistance from the end-user.

Given that we can develop a tested system that matches user requirements, how can we
raise management awareness of the problems of system implementation? Clearly manage­
ment must provide the time and resources for adequate training and parallel running (if ap­
propriate). Users need time to adjust to major changes in work patterns and management
must not force the pace.

So, the most serious implementation problem is resistance to change. This resistance, which
is quite natural, can lead to poor use of the new system or even total rejection. Resistance
can be reduced by encouraging maximum project participation by as many users as possible
and designing a user-friendly interface to the system.

To help minimize resistance to change, we use approaches from the field of psychology.
Lewin-Schein propose a three-phase approach. Firstly to unfreeze people (get them in­
volved and used to the idea that changes are cOming so that they understand the implica­
tions). followed by making the change (implementing the new system) and finally re­
freezing (giving support and assistance with the new environment).

The tuning and debugging of the system that occurs after cutover is an ideal time to work on
the refreezing process with the users.

Chapter 19 Implementation 329

Based on the career planning that is done on an ongoing basis, the project team will now be
looking for another challenge to get their teeth into! Planning what is going to happen to
team members should have already been communicated by this time and the project
manager will be tying up the loose ends and releasing staff to other assignments.

Before formally handing the system over to the maintenance function, the team should get
together to carry out a project review. This is a means of identifying what went right and
what went wrong with a view to improving things next time around. As a project is a
learning process for everyone, it is worthwhile trying to formalize the lessons learned and
communicate them to the whole team. Areas like estimating and scheduling should be
analyzed as should staffing and user problems. Use of project methods and tools should be
evaluated for effectiveness - especially if new ones have been uSI!d. This information should
be documented and circulated to all LS. staff. After all, you have just completed a major
endeavor successfully and you should tell everyone how you did it! In any event, another
team will carry out a post-implementation audit in a short while so you had better get in
first!

330 Managing Information Technology Projects

Case Questions

Gleam Stores

Q19.1
Would it be appropriate to involve users (line managers) in the Gleam Stores implementa­
tion project? How could this be achieved? What role should they assume? What difficulties
might arise with systems staff? (20 minutes)

Handover Trust
Q19.2
We are nearing the end of integration testing of the New Business system. This has generally
gone well, although not all interfaces can be tested in the development environment (some of
the systems we need to talk to are in old technology which is only available in the produc­
tion configuration). Management has asked you to look at the options for installation, in­
cluding:

• Parallel running of the new system with the old applications processing system. This
will necessitate a variety of one-time interfaces to synchronize data across systems

A "big bang" approach, where things are tested thoroughly and then implemented as
a cutover from the old to the new. This minimizes the interface complexity, but has
a high risk if there are any glitches with the new system. There is just one weekend
in the next three months when this can be done, because of closing financial and tax
years.

The system's correct functioning is critical to the business. A failure for one day could cost
several hundred thousand dollars.

Decide on an implementation strategy. Document the phase plan in Gantt format. Discuss
how you will handle the negative aspects of the approach chosen. Can you think of other
creative ways to address the problem?
(40 mins)

Chapter 19 Implementation 331

ThoughtWell Books
Q19.3
Given the staff profiles from Q5.5, whom do you think would be the best candidate to lead
the ThoughtWeU installation, given that you have been promoted and will be leaving the
project? How would you prepare your successor to handle the installation? How would you
handle this development with the client? What role(s) would you see for client staff in the
process? (30 mins)

332 Managing Information Technology Projects

20Mul~iple
Project
Coo rdination

Integrating Plans
Our project is seldom the only one running in the organization. This almost inevitably
means that, at some point, we will be competing for resources. A typical example is a
number of parallel development projects that need the services of a central Database
Administration function at about the same time. If our needs for resources external to the
project team are not carefully identified and planned for, chances are that we will encounter
unforeseen delays when we need to call upon them. One way to try to alleviate these clashes,
and to reduce the load on shared resources, is to try and integrate the plans from the various
teams so that a macrolevel picture can be obtained. This would be very difficult if the plans
were all prepared differently. Fortunately we have seen that we can use common
frameworks for the plan regardless of the type of project, and nearly identical plans (in terms
of structure) for similar types of project. Plans will obviously differ with respect to the real
detail tasks at the lowest level, but can have a very high degree of similarity at summary
levels. These concepts are shown in figure 20.1, implemented via a development support
group.

Eliminating Bottlenecks
We can enhance the degree of commonality by starting from a common base. One approach
that we have used with several clients is to prepare a set of sample "skeleton" project plans
for the types of projects tackled by the organization: one for custom mainframe develop­
ment, one for End User Computing projects, one for package implementation, etc. By using
the configuration management framework, we can ensure that at the phase-level summary,
the naming and structure of all these plans are consistent. By introducing standards for
naming of common resources (e.g., DBA, Capacity Planning, Facilities) we can ensure that
resources outside the team are easily identified. The standard plans should be maintained
and distributed from a central group. In our case, this was a "development support" function.

Individual project managers then modify the plans and add detail, before submitting a copy
to the central coordinating function. The plans returning from the teams are integrated
together to identify any resource conflicts. This can be done manually, or using a project
management package, where the team's plans are treated as subprojects within a higher level

Chapter 20 Muttiple Project Coordination 333

Skeleton Plan

Project Plan
Initiate Project
Requirements Phase
Design Phase
Build Phase
Implementation Phase

Development
Support

Post-Implement Review! Project Plan

/

"'. . j Initiate Project
Requirements Phase

~
~. Design Phase
~ •. Build Phase

; Project •.. Implementation Phase •

;D~__'l,~~=!~':::;:jt~;:~i~W .

Multiple Project Coordination

..... ~

Progress &
Adjustments

I

!

Repository
of Plans

Figure 20.1

plan. The overall resource picture is then evaluated. We can pick up excessive workload and
move activities around in consultation with the teams and central groups to alleviate
problems. In other words, we are doing "resource smoothing" at a macrolevel, not just
within a team.

If the teams also feed back their actual progress and resource consumption, as well as
amendments to their plan for future estimates, the central group can act as an early warning
center to other related projects. For example, we may see that the Order Processing Project is
dependent upon the Mainframe Upgrade and Product Maintenance projects. If one of these
provides revised estimates indicating a significant slippage, we can alert the Order
Processing team so that they can take appropriate action. A further benefit of the central
coordinating team is the issue of quality. It is remarkable how the quality of project plans
improves when

teams are given a good example to begin with

project plans are visible and worked with by another group outside the team

actuals are tracked and visible outside the team

• standard project plans are updated and revised to reflect the experience of teams in
the organization

334 Managing Information Technology Projects

Boundary Management
A further worry across multiple projects is the issue of scope. We may initiate related
projects whose results will need to dovetail. An example would be a project which will
generate a system supporting Point of Sale (POS) gathering of sales data in a retail
organization, and a related Sales Analysis Project. These could easily become confused in
terms of defining requirements, liaiSing with users, and exactly who is responsible for what.
The most dangerous thing here is to make assumptions. One view of thls is that they "make
an ASS out of U and ME". It is all too easy to expect that the other team is doing something,
when in fact they are not. This can leave "holes" where requirements have gone through the
cracks, so to speak. Equally problematic is the situation where the teams encroach on each
other's territory. This can lead to redundant work, arguments, and very confused users.

To avoid these problems, we must scope our projects carefully and manage the boundaries
from inception until after installation. If our projects are involved with system development,
a good technique is to use the context diagram introduced in an earlier chapter. We can in
fact produce a very high level architectural diagram (see figure 20.2) which shows the
related systems, and then mark out the context of each on this diagram. Wherever possible,
we should try to make a clear interface by means of data. If we can identify the groups and
elements flowing across the boundaries, then we can control the scope of each project
precisely. This is easier said than done when we are dealing with a shared database. In this
case, we may need to explicitly define which system is responsible for which state changes
or transactions. Having a good data dictionary or CASE product can greatly facilitate this.
Some of the more modern development languages/environments, particularly the Object
Oriented ones, will offer facilities to automatically create cross references as we develop
from prototypes to production code. If you do not have this kind of environment, you should

,..----

Product
Mainte-

P~S Terminals

Point of
Sale
System

nance ~ t'"'c"""-'-'---_

System

Product
Information

Managing Scope via Boundaries

----1-------

Daily Sales
Trend

Customer

~~!;]-IC::1· ~ Sales ,i, 'c '.' . ,

: ; Analysis. b '1<>"·; ,
" System i 'x :
I ~ I I

-;.... ta't&"''''''''C"",."N J '

i Sales History

Figure 20.2

Chapter 20 Multiple Project Coordination 335

consider using a configuration management tool such as eee (mainframe) or pves
(personal computers and LANs).

The Role of Reviews
Reviews can prevent major problems by identifying scope creep in projects. If we use the
configuration management approach, the check against original criteria should ensure that
projects are not under-delivering on scope. If the same resources are used to perform reviews
across the related projects, clashes and differing assumptions can be easily spotted, especial­
ly where a consistent methodology is used. A good place to position these resources is in the
development support group.

Reviews are a safety net, however, and should not be relied upon as our primary mechanism
for keeping things straight. We should use good analysis techniques which are consistently
applied across teams. Teams should also bear a responsibility to liaise regularly and notify
each other of any issues which might create problems for the related groups.

Sharing Resources
Where a single person is to "belong to" and function as a member of two or more teams, we
must make allowances for the conflicts and stress that this can cause. Even if the personal
relationships are all cordial and functioning well, the individual still undergoes a "context
switch" each time they shift from one team to the other. We can attest from personal
experience that this can be very exhausting. If the interpersonal relationships are not running
smoothly, or if more than one team is under pressure and expecting all its members to put in
extra effort, the "shared" individuals come under considerable pressure. Great stress can also
be caused by split loyalties and conflicting demands from the different team leaders.
Generally, this type of arrangement should be avoided, unless the individuals concerned are
mature and senior enough to resolve these issues for themselves.

Other resources which are typically shared include those which cut across project and func­
tional boundaries. Typical of these is the Database Administration team. One way to al­
leviate bottlenecks in this area is to train teams in the skills necessary and allow them to
perform their own database analysis and design. The DBA group then reviews and amends
the completed design. This gives the team higher ownership of their design, while ensuring
that corporate standards are met and that the resulting design will have adequate perfor­
mance.

Consistency of Methodology
Where there are multiple projects running in parallel, it will be much easier to manage
successfully if the methodology that we use across them is consistent. This should apply to
the structure of plans (naming of phases, reviews, etc.), to the deliverables that are produced
(as far as possible) and to the manner of project progress reporting. If we can get these
consistent, we will find it much easier to assess projects relative to one another since we will
not be comparing apples with oranges. A further benefit is that project staff can move more
easily from one project to another. We had one instance which illustrated this particularly
well. We were involved with a project at a major insurer, where we had implemented a
system development and project management methodology. We transferred an Analyst

336 Managing Information Technology Projects

Programmer onto the project from another organization using the same methods and
technology, but in a totally unrelated industry. Because the project was under time pressure,
the person was given five program specifications within the first day. At the end of the
week, she had completed these, and approached us for more work to carry on with!

Mixed Messages
We should take particular care in our liaison with groups outside the project environment.
They may well feel uneasy already and are far less used to change than we are. After all, we
are usually the change agents. If they see different people from different teams and get
conflicting reports or different messages, they will become confused, anxious and start to
loose trust and faith. We should carefully coordinate our interaction with them and ensure
that we have our ducks in a row before making presentations, or issuing documentation. A
good principle here is that all user/management contact outside the team should go through
the project manager or a designated analyst. These persons should regularly meet with their
counterparts on other related teams to ensure coordination.

Stay Business Focused
With all the technical complexities of managing multiple efforts, it is easy to get bogged
down in the interfaces and details. We should periodically step back, remind ourselves what
the overall business objectives are, and then refocus our activities to deliver these. We will
frequently find that the technical issues can be avoided, subcontracted or otherwise dealt
with when we remember what it is we are trying to do in the first place.

Chapter 20 Multiple Project Coordination 337

21 Subcontractors

Using Subcontractors
Using subcontractors to provide vital resources in a project is a common strategy. It makes
sense to employ contractors and consultants to add certain short-term skills to a project team.
It is also important to use software and hardware suppliers to provide products and services
where these can help solve the user's problem. This chapter looks at when to use subcontrac­
tors and how to choose them. It also discusses the tendering and negotiation process, how to
draw up contracts, and the project manager's problems dealing with the subcontractors.

When to Use Subcontractors
The people resources needed in a project vary over the lifecycle in terms of skills and
numbers. Sometimes the skills and/or the numbers are not available in-house. In these
situations, the project manager may have to resort to outside help. These decisions are not
easy as outsiders sometimes create short- and long-term problems. Thus extreme care is
required when deciding on, first whether to use a consultant/contractor and second, which
organization to approach. The normal approach is to specify your requirements, identify the
supplier you want to deal with, and then select the specific individuals.

How to Choose Subcontractors
Subcontractors can provide several different services to a project. Service bureaus, software
houses and software package vendors are categories of subcontractors used in project
development. If a software house is developing a part or all of the system for you, you must
manage that process as a project following the PLC in the same way as an inhouse project.
Planning may be a combined responsibility with the software house, but you must be solely
responsible for control. Consultants and contractors are often used to assist in the
development process. Consultants can be hired from accounting firms or from consulting
firms specializing in the LT. industry. Contractors can also be recruited from software
contract houses and personnel recruitment agencies. In all these cases, the organization you
deal with should be one you would wish to do business with on an ongoing basis. The actual
individual selection process should be the same as the selection process for permanent staff.
Don't let the outside firm do the selection for you, as it is your ultimate responsibility to
ensure you have competent, motivated staff. The selection criteria you adopt should include

Chapter 20 Subcontractors 339

an individual's proven skills, the individual's personality, his charge rate, and the supplier's
credibility and track record.

The Tendering and Negotiation Process
The tendering process begins when the project requires services which can only be provided
from outside the organization. For example, software suppliers may be requested to offer
their packaged solutions to satisfy certain business problems. The tendering process starts
with the project manager drawing up a Request for Proposal (RFP) document. This
document specifies the business problem in detail and requests a solution to that problem
from the supplier, The process includes the following steps:

• Draw up the RFP

Determine selection/evaluation criteria

Select possible suppliers

Send RFP to suppliers

Evaluate RFPs and develop a supplier short list

Carry out an in-depth evaluation

Select the supplier

Develop a mutually agreeable contract

Take delivery of the product, ensure quality and then pay

Request for Proposal

Name of Company Contact Person
Company Background
Project Scope
System Functions and Outputs
System Performance
Possible System Growth
Operating Environment
Interfaces to other systems
Reliability and Availability
Maintenance and Support Requirements
Documentation and Training
List of Current Customers
Terms and Conditions

Request for Proposal Figure 21.1

340 Managing Information Technology Projects

We will look at the contract issues in a later section. An RFP can be a one page outline or a
large comprehensive document. In principle, it should contain enough information to allow
the supplier to understand the problem. It is recommended that the detail in figure 21.1 be
considered.

This RFP should be discussed with senior LS. management to ensure completeness and
synergy with longer term LS. plans. It should then be sent with a covering letter to es­
tablished suppliers of the required services with the date when proposals should be returned.
Allow plenty of time for this exercise as, in many cases, suppliers will need to discuss your
requirements with you in more detail and prepare comprehensive documentation. The selec­
tion criteria include a list of essential and important features that you require. These criteria
are "weighted" in importance. For example, if you were tendering for a: project management
software package, you may have developed the list of factors with their associated weight­
ings as shown in figure 21.2.

When the tenders are received from the potential suppliers, they are evaluated objectively
using the weighted criteria above. For each supplier, a raw score (out of say 10) is allocated
to each criterion based on your evaluation of the product (figure 21.3).

Factor

1. COST
Price (80%)
Implementation (20%)

2. SUPPORT
Maintenance (30%)
Training (30%)
Installation (40%)

3. FEATURES
Resource-leveling (25%)
Resource Gantt (20°/0)
Goal-seeking (20%)
Windows support (35%)

4. CAPACITY
Multiple project support (40%)
250 activities per project (30%)
Fast calculation (30%)

Factors and Weightings

Weighting

(40%)
.BO*.40 =.32
.20*.40 =.OB

(20%)
.30*.20 =.06
.30*.20 =.06
.40*.20 =.08

(30%)
.25*.30 =.075
.20*.30 =.06
.20*.30 =.06
.35*.30 =.105

(10%)
.40*.10=.04
.30*.10 =.03
.30*.10=.03

Figure 21.2

The raw score for each criterion is then multiplied by its weighting factor, and the adjusted
score added together to give a grand total for each supplier as shown in figure 21.4.

These totals are guidelines to assist the decision process. Thus they can be used to eliminate
suppliers before an in depth investigation of short-listed suppliers commences. Once a sup­
plier is chosen, the real work of negotiation begins.

Chapter 20 Subcontractors 341

... , ... , ... , " , ,,, , , , ,

Factor Weighting Product A

1. COST
Price .32 7
Implementation .08 6

2. SUPPORT
Maintenance .06 5
Training .06 8
Installation .08 8

3. FEATURES
Res. -Ieve ling .075 9
Resource Gantt .06 8
Goal-seeking .06 2
Windows support .105 3

4. CAPACITY
Multiple I?r~ject .04 7
>250 activities .03 8
Fast calculation .03 4

..... , ,. ... ,:

Product B Product C ~
i

6
9

7
5
7

9
8
6
3

6
4
9

9
5

9
5
5

6
5
5
8

7
6
6

:~ .~.
:,;

I
I
~;:

f:~

1
:1
~~
~::
<.

~i l
~--~
Product or Service Rankings Figure 21.3

.................... , ••••• ', ',' •••• , ••••• ,', .••••..••.• , •••.•••• " •••• v • •• " •••••• , ,' ' •••• ' , ... , ,.

Factor Weighting Product A Product B Product C

1. COST
Price .32 2.24 1.92 2.88
Implementation .08 0.48 0.72 0.40

2. SUPPORT
Maintenance .06 0.30 0.42 0.54
Training .06 0.48 0.30 0.30
Installation .08 0.64 0.56 0.40

3. FEATURES
Resource-leveling .075 0.675 0.675 0.45
Resource Gantt .06 0.48 0.48 0.30
Goal-seeking .06 0.12 0.36 0.30
Windows support .105 0.315 0.315 0.84

4. CAPACITY
Multiple project .04 0.28 0.24 0.28
>250 activities .03 0.24 0.12 0.18
Fast calculation .03 0.12 0.27 0.18

GRAND TOTAL 6.37 6.38 7.05

Final Scores Figure 21.4

342 Managing Information Technology Projects

Negotiating
A project manager has to negotiate at different levels both inside and outside the company.
Negotiating is an invaluable skill in project management. Successful negotiation requires
that you know the facts. It is quite normal for your management to try and reduce your cost
estimate for your project If you have broken the project down into small components and
estimated each one, you are in a position to discuss a cost-reduction strategy by requesting
which component can be reduced realistically.

A well-prepared negotiator will know what is absolutely necessary and what can be given
up or reduced. You should also anticipate how much negotiation there could be. In an
internal project, the three negotiables are time (price), quality and functions. Take heed of
the old project manager's saying, "You can have it cheap, fast or good: pick two."
Negotiating for outside services presents the same problem. Thus if you accept the lowest
bid for software services, that company may have underbid to get the job and you may have
to pay more when they overrun their budget. (You may say you wouldn't because you would
have a fixed price contract, but it doesn't help you when the software company can't pay its
staff and the job cannot easily be transferred in midflight to another company). Basically,
you get what you pay for in our industry. Another familiar scenario is where a senior user
manager demands that a project be completed in a certain time at a certain price despite the
fact that you know it will cost a lot more and take longer. When asked on what basis these
amounts have been set, the typical reply is that they have already been promised to users or
"agreed" by senior management! Because we all know that a 12-month project cannot be
done in 6 months, you must educate your management that your approach to estimating and
planning follows sound management methods and that they can trust you to provide a
quality system if they pay a fair price and wait patiently. This applies to your service sup­
pliers as well!

Contracts
After negotiations are complete, a contract is drawn up specifying price, delivery date and
deliverables. In addition, warranties, user's responsibilities and escape clauses may also be
included. Afixed-price contract is the most common type of contract. This is where the
supplier quotes a total project cost at the beginning of the project. Because the project
manager carries the risk of things going wrong, this approach should only be used where
changes are unlikely and the hardware/software platform is familiar. The cost-plus (or time
and materials) project is based on an hourly (or daily) rate plus direct costs. This method is
used where the risks mentioned above are high.

Managing Subcontractors
Managing outside contractors requires careful attention. Apart from the process of selection,
negotiation and contracts, ongoing management control is vital. Particular attention must be
paid to how contractors interact with the rest of the project team, how product quality will
be measured to conform with contract terms, and how system components will be handed
over to the team for later integration into the final system. Given that you have a good
project plan, you should be in a strong position to assign tasks to any new team member and
to monitor progress using the project management approaches discussed in previous
chapters.

Chapter 20 Subcontractors 343

Care should be taken to ensure that contractors understand the standards and quality
requirements and produce all required deliverables, especially documentation. They will
most likely not be there when the maintenance queries arise. Where possible, quality
requirements of all output should be built into contracts to avoid ambiguity and confusion.
These requirements will spell out the criteria for acceptance testing the software products.
These will generally be linked to the method of payment and the percentage payment to be
withheld until the system has been finally accepted. One problem is deciding what tasks
should be given to subcontractors. On the one hand, demotivation of permanent staff will
occur if "rich" tasks are given to "outsiders". On the other hand "outsiders" may be the only
ones with the skills to do the job. To ensure continuity after the subcontractor has completed
the task and left the project, a permanent staff member should always work closely with the
subcontracto!', to ensure continuity in the maintenance phase. This approach will also
provide staff growth and development - an ongoing responsibility of the project manager.
Giving "rich" tasks to "outsiders" requires careful justification by you - and valid reasons for
your actions should be communicated to the project team.

Another common problem when using subcontractors is the different levels of productivity
achieved. Often a subcontractor is more productive than a permanent staff equivalent.
Higher productivity by the subcontractor can cause rivalry and jealously in a poorly
managed project. A good manager will anticipate this situation and get permanent staff
"fired" up to perform at similar performance levels. This can only occur if your permanent
staff are assigned to the project full-time and do not carry other loads like maintaining other
systems or providing ongoing user support. Permanent staff may also complain that their
salaries are significantly less than the contractors. Avoid this negative and misleading dis­
cussion by justifying to project team members in the early stages that contractors will be
getting a fixed income only without the company benefits of annual leave, sick leave, pen­
sions or training. In fact, most contractors do it for a period of time, e.g., three to four years,
and then feel the need to take up permanent employment again so that they can develop their
careers further.

344 Managing Information Technology Projects

22
The Very Large Project

Program
Management

We have seen many reasons throughout the text why we should keep projects smalL These
include:

Manageable time frames which people can relate to

Overhead of communication in large teams

• Increasing complexity and difficulty of testing large systems

• Reduced risk to the organization should the project fail

What do you do if you are assigned a real monster and management insists that it really is
necessary and must be done? The answer is that we have to break it into smaller, more
manageable chunks.

Tight Deadlines
To compound our woes further, these monsters often are crucial to the organization and
come with tight deadlines. These can prevent us from using an approach where we break the
functionality up and deliver in phases. Let us say we are commissioned to write a
management system for all the events and results at the next Olympic games. The system is
extremely complex, must be very reliable (20 billion viewers will be watching its output)
and must be ready in 20 months. By the way, it also has to control and interface to a large
number of special timing and telemetry devices. Some of these will not be physically
available to us until 6 months before delivery. You will also notice that it is virtually
impossible to test the system under "live" conditions. How can we succeed?

Fortunately for us, people in the military and aerospace industries have already faced many
similar challenges. We may just have to make you a rocket scientist! Seriously though, there
are a number of techniques from the discipline of Program Management that we can borrow.

Chapter 22 Program Management 345

The Role of Architecture
One of our chief weapons will be the use of architectures. An architecture is a high-level
conceptual design or blueprint of how something will fit together and how the interrelated
parts will work. It allows us to focus initially on the objectives and not on the details; to try
various alternatives and approaches without committing to them. We are already familiar
with architectural models in the building and construction industry. The architect might
build several different models to try out client response to them, assess integration with the
environment, or difficulty of construction. When an approach is decided upon, the model
can guide the selection of materials and provide a shared vision for the various contributors.
We need such a model, but what does it look like for a hardware/software solution?

You are probably already familiar with a variety of modeling techniques:

Entity Models for depicting the data used by an organization or application

Function or Process models which show the handling of events and transactions

Prototypes which show how the system will behave in operation, and how the user
community will interact with it

What we need to do is to adapt these to provide us with the tools necessary to architect our
very large project. We particularly need to identify responsibilities and inteTjaces.

Responsibilities
To get anything done in the project, you need someone, or some thing to do it. To have
anything work in our delivered product, some hardware or software component must deliver
a certain function. Responsibility implies that someone or something can be relied upon to
perform a given function. If we are to accomplish complex things reliably and quickly, we
need this kind of assurance. To identify responsibilities, we might proceed as follows:

Identify the overall business goal of the project

Identify the overall business goal of the product

Use functional decomposition techniques to break each of these goals down to
subgoals and further subgoals until we can identify small enough components to
allocate to specific teams, individuals, or components

We should come up with two lists of actions:

•

Those derived from the product goal, which will be things which the various
components of the delivered solution must perform

Those derived from the project goal, which will be things which the teams,
individuals and subcontractors to the overall project will take responsibility to
deliver

We need to go further: for the product goals, we need to define in what time the component
must be capable of performing its function. For the project goals, we need to define comple­
tion dates. We can represent the goal hierarchies as we did for Product Models and Work
Breakdown Models earlier. We can add to the models the response time, or deadline criteria.

346 Managing Information Technology Projects

Next we can examine dependencies between goals. We should try to partition respon­
sibilities to reduce these. This will reduce risk and interdependencies. Unfortunately, it also
tends to push up the size of tasks or components, thus defeating our objective of breaking
down the job into smaller components. A balance must be reached between level of depen­
dencies and size of component or activity. This process is not unlike trying to optimize
modularity in a structured program design. What we want is maximum cohesiveness within
each component or task, and minimum interaction with other tasks, or components.

It can be very useful to use the human brain's capacity for organizing complexity and find­
ing patterns. We can facilitate this by drawing charts which show the interactions of com­
ponents visually. Components which share a high degree of interaction with each other, but
few interactions with other parts of the system, may be merged (size permitting) or grouped
as a subsystem with a common interface. This allows us to simplify the interaction of other
parts of the system with these components. It also insulates users of the subsystem's
functionality from changes in the implementation of the subsystem. This provides future
flexibility and reduced maintenance effort. Aguideline which we can use to group
functionality is to look for things which utilize the same data. This implies that we have con­
structed a data model describing the problem space. This should be at an appropriate level of
detail. Components which interact with the same data are good candidates for combination
into subsystems. This principle is now becoming widely recognized and implemented via
object oriented techniques which store the procedures (methods) which manipulate data with
the data itself, thus creating objects.

A similar process can be used to group related tasks and activities together. We can map out
the whole set of tasks required, which may be a very complex set of interrelationships, and
then simplify it by grouping tightly related and dependent tasks into subprojects which can
be managed separately. A further guideline will be a matrix mapping tasks against resources.
Those tasks which require the same resources can be more easily grouped into subprojects.

Interfaces
Once the components, subsystems and subprojects are identified, we can concentrate on the
interfaces. These are the areas where responsibility passes from one unit to another. The
interface between a software system and a hardware device is the object code definition. The
interface between an application program and a DBMS is the set of Database Manipulation
Language (DML) instructions which are documented as available to the programmer. The
interface between a user application under WindowsT~ and the Windows.,.M system software
is the published Application Program Interface (API). This guarantees that, if an application
is written according to the API guidelines and standards, the environment will perform the
requested services as intended by the programmer.

A key thing here is that the interface and the results returned to the user are guaranteed, not
the implementation. It is common for hardware manufacturers to radically change their
underlying machine architectures to achieve better price/performance ratios, while users and
user applications programs are oblivious of the change in implementation. On one processor
adding two floating point numbers together may translate to twelve instructions while on the
next model it may translate to three quite different instructions. This does not concern the
user who will still achieve the same result in the same way, albeit now more quickly. We
need to achieve the same stable interface behaviour within our own architectures.

Chapter 22 Program Management 347

I was once involved in implementing a development support infrastruc­
ture in the Adabas Natural development environment. The idea was to
save application programmers the problems associated with performing
commonly required functions, such as handling large and complex pro­
grams within the severe source line number limits of Natural 1.2; pro­
viding context-sensitive help on screens, intercepting function keys,
trapping and logging errors, handling menus and fast paths, ensuring
user authorization and so on. This was complicated by the fact that the
client was already proceeding with development of several systems to
run in the new environment. Our first task was to agree on what ser­
vices the infrastructure would provide to the application programmers.
This was based purely on feasibility and no detailed design. Next, we
defined the manner in which the user programs would interact with the
facilities provided by the infrastructure. Using this definition, project
teams were able to proceed with their own designs and implementa­
tion, trusting that we would deliver the services required. The develop­
ment of the infrastructure proceeded in parallel. As components were
ready, the "dummy" components were replaced with fully functional
ones, transparently to the application developers. Their applications
were automatically endowed with the necessary services. This clean
architecture has allowed sites using it to enrich and enhance the be­
havior of their systems over an extended period without requiring ap­
plication changes. It has also enabled them to take advantage of later
versions of the environment in a global fashion.

There are various types of interfaces that we might be interested in:

Data Interfaces between software components. These may take the form of
parameters passed, files exchanged, or shared access to a database (where it is useful
to identify views). These interfaces are normally asynchronous, i.e., a component
which alters a data value will not normally wait for or expect a specific response
from the next component to use the data

Control Interfaces where one component is requesting an action or operation from
another and expects a certain response. These are normally synchronous: i.e., the
sender or requester will normaJIy wait for a response from the receiver (or server)

• Resource Interfaces where one component must wait for a resource to be released by
another component before it can proceed

We can regard project task dependencies as special cases of the data interface (where a
deliverable from one task is the input for a subsequent task) or the resource interface (share
limited resources are needed for multiple tasks).

We can identify interfaces by examining the interaction between components. We need to
stabilize interfaces by identifying and defining:

• Data groups and elements which are shared between components

348 Managing Information Technology Projects

Agreed sets of requests (protocols) which client subsystems will expect server
subsystems to handle correctly

Shared resource conflicts and how they will be resolved. In software, this may be a
locking mechanism or semaphore signal. In projects, we may choose to assign
priorities to subprojects which will allow them to claim resources in proportion to
their importance to the overall goals

Defining interfaces is a crucial job and should be performed by the highest skilled persons
available. Above all, we want to keep interfaces stable, since any change at this level will
have severe ripple implications throughout the macroproject.

Breaking Up the Work
There are two ways in which we can divide up the product. We can draw a high-level
architectural picture (e.g., a data flow or event model) and partition subsystems which
appear cohesive and have minimal interaction to other areas of the model. We illustrated this
approach in chapter 20. We can think of this as Iwrizontal partitioning. We are dividing up
the total functionality required into separate interacting components at a single level. There
is another way in which we can control complexity: this is to work top-down. We can
architect the top level model at a very low level of detail, and then decompose components
in successively higher degrees of detail. Let us use a portable radio to illustrate the concept,
figure 22.1.

Several points should be noted in the figure:

Receive Radio Transmissions and Make Them Audible

Receive Radio Waves Convert Radio Waves Amplify Weak Signals
& Select Desired Station to Audible Frequencies to Listening Level

--r--
Receive Select Convert Convert to Amplify Make
Signal Required to Inter· Audio Signal Electrical
from Frequency mediate Frequency Signal
Antenna Frequency Audible

- ~ -r-o ---iI

<
-- ---

Levels of Abstraction in Architecture Figure22_1

Chapter 22 Program Management 349

Each component can be individually designed, constructed and tested without
reference to the others, provided we know what inputs it can rely upon, and what it is
expected to produce

The implementation of any component can be changed completely without affecting
any other component

The architecture can be appreciated at a high level by anyone, even someone who
has no technical knowledge

• There are successively higher levels of abstraction to the top of the model, and
higher levels of detail to the bottom of the model

The Role of Abstraction
Abstraction is an extremely useful organizing principle. We can use it to achieve a vertical
partitioning in addition to the horizontal partitioning discussed earlier. While it is common
for the horizontally partitioned components to have serial dependencies, these are less
common with vertical partitioning. This can translate to higher levels of parallelism across
projects within our program. Before we can take advantage of this, however, we must define
the interfaces clearly. To do this safely requires an expert knowledge of feasibility or,
alternatively, technical prototypes to prove the concept. Architecting in this way has an
added advantage of allowing us to achieve high levels of reuse of underlying service
components, and to make relatively large changes in delivered user functionality by
rearranging our use of fundamental components. To return to our engineering analogy, we
might use the same timer chip in a watch or a microwave oven. What does this look like for
a software system? Typically, we would end up with user-level transactions at the top level,
data related or input/output oriented application services below that, and infrastructural or
operating system services below that. See figure 22.2.

Simulation
While our development of various components proceeds in parallel, we may wish to begin
testing components. We may not be able to afford the time to wait for the surrounding
components to be ready. In this case, we can simulate the environment by creating a harness
which will feed our component the inputs it expects and allow us to examine the outputs.
This is much like an electrical engineer using instruments to apply voltages to test points on
a circuit and read the results at other points. In this way, the component can be tested and
certified functional, even though the surrounding components are not yet ready.

The whole architectural approach and idea of simulation as a way of managing the lifecycle
is deeply rooted in the Object Oriented paradigm now gaining ground rapidly. We
recommend you investigate this for further ideas. Good texts to consult are those from Grady
Booch and Martin/Odell.

Managing the Process and Delivery
Managing the parallel projects in a program requires special attention. We need to be
explicitly aware of the interdependencies and the impact that problems in one area can have
on other areas. We can use our architectural model to help us control this. If we are advised

350 Managing Information Technology Projects

t

Input Subsystem

'¥c '" . !
,

,
;J

i' i1 Customer Verify Customer

; Process il Subsystem
Add Customer

i

t i Customer
j

E
Amend Customer Q)

<ii
i Order :,','

!,
>-

'x "ir, j i,""'" ,. <J'J ..c

r
: Retrieve Product

::l

Transaction Product J
(j)

t Subsystem
Q)

, <J'J

Add Product C'd ..c
C'd

Reserve Product
iii
Cl

~ 'i. '" " ' .. '" ,""V'i,W,,',",

; I; Order Add Order

Subsystem

i r :

Amend Order

J.

,

Output Subsystem ;

.
i

, ."{,--, . ;~"." ", 'w' m,' "'c 'y <,_, p ,
"

Architecture for an Order~Processing System Figure 22.2

by the leader of the team developing the Customer Services module that they will not be
able to keep the interface stable, we can immediately see that this will affect our Order
Processing module. This can alert us to get the two teams together to resolve the issue. We
can easily see which interfaces are affected, and which other teams will be impacted.

As regards delivery, we mentioned earlier that we could record deadlines for the various
activiti~s on a Work Breakdown model. We can track actual delivery against this. If there
are any slippages, we can immediately determine which tasks are dependent upon this date
and advise affected parties accordingly.

Logistics
Because of the ripple or "knock on" effect of any problems, we need to pay careful attention
to logistics. In the military sense, this involves everything to make sure the troops at the
front stay fighting. In our project environment, it means that equipment and software tools
arrive on time, that resources are added to teams when we promised them, that scheduled
training takes place as planned, that central resources are there to assist when necessary, that
the coffee machine stays working and a hundred other details. Nothing is too menial here.

Chapter 22 Program Management 351

The NCR 9300 Program

During my career at NCR, I was involved in the release preparation and
activity for several new products. One stands out in my memory. The
company needed a new midrange interactive minicomputer. An engineer
at the California plant came up with an idea to shrink the previous
mainframe 8400 design literally board for board to a set of chips and
produce an equivalent power machine at a fraction of the cost. The idea
was presented to management as a set of overhead foils and approved.
The 9300 program had begun. Before it was finished, it would produce a
new chip set, a new machine family, a new operating system, a new set of
firmware, and a new database management system. The incredible thing
was the timeframes - from the initial conceptual presentation to the
simultaneous world-wide release of the new machine in forty countries
was just fifteen months. I received training at the 12-month mark, and it
was incredible to see how all the components developed in parallel were
coming together as architected. Most of the software we used for training
was running under simulation on an older machine. When the first systems
shipped, they worked exactly as we had experienced they should.

GM

Remember that as a manager, your job is to achieve results through other people. Anything
you can do to make your teams more successful adds to your success.

Summary
Managing multiple interrelated projects delivering a complex product within tight deadlines
and to stringent quality levels is arguably one of the greatest challenges you will face in an
LT. career. It is not for the faint-hearted. Done right it can give you a fantastic sense of
achievement. Go to it, and let us know how you do!

352 Managing Information Technology Projects

Background

Introduction to
Case Studies

During our years in industry, we have encountered a great many interesting, daunting and
illuminating project situations. There is no doubt in our minds that, in project management,
there is no substitute for experience. This is very difficult to obtain from an academic or self­
study program. We have tried to imbue the book with practical examples and anecdotes to
help you gain an insight into the techniques, concepts and philosophies presented. To further
enhance the opportunity for you to gain practice with the techniques and an appreciation for
the subtleties of their application (which may not be apparent from the descriptions in the
text) we are including several case studies. These will be introduced in this section. These
may give you an appreciation of the type of situations in which you might apply the ideas in
the body of the book. As we progress through the chapters in the main text, we will return to
these cases and set relevant questions. A background knowledge of the cases will thus be
useful before you proceed.

The cases range from a small, self-contained system with a well-defined set of requirements
(the MyWay Organizer) to quite extensive ones involving major transition and several
projects in a large corporate environment (e.g., Handover Trust). Questions will be set at a
number of levels, ranging from something you might tackle in class in ten to fifteen minutes,
to those with considerable depth and subtlety requiring between forty minutes and an hour to
complete. The more trivial questions will deal with techniques and the mechanics and
representation issues, while the longer ones will focus more on testing understanding and
application as well as more management-oriented issues. Finally, you will probably detect
that the questions evolve from the early chapters dealing with techniques and "harder"
issues, to the middle chapters dealing with management topics such as risk and quality, and
fmally to people and organizational issues toward the end.

In writing the cases, we have assumed a computer industry and systems background. If you
have difficulty with any of the terms or acronyms, please consult the Glossary at the end of
the book.

We hope you enjoy the cases!

Introduction to Case Studies 353

MyWay Organizer

Background
The MyWay Organizer is a planned personal computer product to run under Microsoft
Windows"''' or OS/2.,. ... The goal is to provide a very user-friendly piece of software which
will support an executive or marketing individual in planning and organizing his time, as
well as staying in touch with colleagues, associates, clients and others.

Requirements
Functions which the product will provide include:

• A diary, with the ability to view by day, week or month

• An appointment scheduler which integrates with the diary

• An address and telephone book function, with a telephone dialer

A free-form database where the user can specify the items of information to store for
each entry

A planner which provides a year to view and allows the scheduling of blocks of time.
For example, you could record leave, training and specific projects or trips

A "to do" list, which will carry forward unfmished items and allow sorting by
priority, location, etc.

Ability to mark areas or entries as "private". This will allow the executive to give the
organizer to a secretary or colleague without fear of disclosing sensitive information

Technology
Most users will use the product on a pen computer or a notebook. Import and export features
are planned to allow interoperation with leading desktop products, including spreadsheets,
databases and word processors.

The organizer should typically be loaded as a "startup and stay resident" program which will
pop up in response to a user-defined key combination. It should save the screen area over
which it appears and restore this when it is closed.

The product will be sold as a "shrink wrap" application through retail dealerships and direct
through mail order. A market of some 10 to 20000 copies is envisaged. It should be efficient
to be relatively undemanding of hardware resources. To this end it will be written in C++,
making use of existing database, communications and Graphical User Interface (GUI)
libraries.

354 Managing Information Technology Projects

The package should include everything a PC-literate user needs to install the software and to
teach himself to use the package without recourse to our support organization or expensive
third-party training.

Your Role
You are a project manager in Doublon Software, the creators of the MyWay Organizer. You
have been assigned the project for the specification, development and testing (up to the
initial public release) of the product. You have access to technical specialists, analysts,
programmers and a marketing and legal department.

Introduction to Case Studies 355

Gleam Stores
The Company
Gleam Stores is a medium-scale retailer with some 200 small furniture and appliance outlets
across the country. Established in 1950, the chain has done well, offering a blend of
attractive quality merchandise coupled with easy credit terms. Most sales are on credit, with
the company running its own installment sale scheme. Clients pay on a monthly basis, either
via check or through debit order. Client loyalty is encouraged through special discounts to
repeat clients, focused marketing, and a "Value Club" which sends clients a monthly
magazine/catalogue with details of the latest merchandise and special offers.

Current Systems
The group has operated a Unisys ™ mainframe at the head office for the past 15 years. The
machine runs the MP operating system, although it is also capable of running Unix. This
system has coped well with high-volume batch processing needed to handle the generation
of monthly statements, and the mailing of club catalogs. All central applications are written
in COBOL and run against a Codasyl network database, with the exception of general ledger
and salaries systems, which are application packages purchased from Unisys. These still use
indexed files. There are currently about 200 000 client and past client records on the system
with associated credit, purchase and payment history. Applications include: Client Details
Maintenance, Credit Authorization, Contract Processing, Stock Control, Statements, Receipt
Processing, Debit Order Processing, Club System, the packages mentioned. and Sales
Consolidation.

Seven years ago, a system was implemented to consolidate sales information from the stores
on a daily basis. This system also calculates commissions for sales staff and feeds this
information through to the salaries system. Each store has one or more programmable
terminals. These are NCR machines specifically designed for credit authorization and
receipting. They read their programs from magnetic tape cassettes, and can store receipting
information on another similar cassette. They are based on the Intel 8080 chip and are
programmed via a dedicated proprietary language (TRANCON) compiled on an NCR
minicomputer at head office. Object code is downloaded to the branches via dial-up
communications. Where a store has multiple terminals, one terminal will act as the master
and will store the software for the other machines in the store, which are connected via a
local area network. The master unit in each store has communications capabilities to request
credit authorization online from Head Office. Since the volume of authorizations required on
a daily basis is low, most stores make use of dial-up facilities. When an authorization is
requested, the terminal will automatically dial Head Office. Some of the bigger branches
have dedicated lines. At the end of the day, the central mainframe runs a job which dials up
each store in turn and requests all receipt and sales details which have been stored on the
cassette units. Once all the collection is complete, a batch process consolidates all sales and
receipts, updates client accounts, and calculates commissions.

356 Managing Information Technology Projects

New Developments
The chain is expanding rapidly, and while the current systems work well, the dedicated ter­
minals have become expensive relative to standard personal computers (which also provide
much more functionality). It is not cost effective to install new dedicated terminals in new
branches. There is an increasing demand for personal productivity and other applications
from the stores. Store managers are looking for budgeting and quota management systems
which they can administer at the store level. They also want more access to and control over
client records, to allow them to perform more intelligent marketing and follow-up. Payment
history and account information is also required to facilitate collections. A pilot has been in­
stalled where PC's have been used in a new store to perform similar functions to the dedi­
cated machines in other stores. These machines have also been used for budgeting and quota
management using spreadsheet and word-processing packages.

Your consulting organization has been retained by Gleam to recommend how to approach
the next step in moving to standard "commodity" technology at the branches with the
following aims:

• Reduce cost of hardware in new stores

Improve serviceability of branch equipment via inhouse expertise

Decentralize client information in support of local marketing and collections

Integrate with personal productivity applications, including spreadsheets, word
processing and presentation graphics software

Credit and contract approval is to be retained centrally for the forseeable future.

A draft proposal has been made with the following components:

• Full documentation of the software system that has been piloted, including suitable
user manuals for field deployment

• Development of a training package, including classroom materials, student manuals,
and worked examples for hands-on practice. Two days of training is envisaged for
store-level operators, and four days for in-store supervisors

• Stress testing of the developed software to ensure that it can cope with production
volumes for all stores and peak trading periods, as well as to ensure that it recovers
correctly from equipment and other failures. Any necessary modifications or tuning
of the application to achieve better performance are to be made

An initial implementation phase involving developers and users from H.O. which
will roll out the system to the other stores in the same region

A user-led implementation of the system to all other stores

Introduction to Case Studies 357

Handover Trust

Background
Handover Trust is a major life assurance company. Established in 1880, they now service
some 4 millinn policyholders in seven countries. Head office is based in London and
includes divisions dealing with individual policyholders, group schemes for corporate clients
(medical aid, pension, etc.) and investments (e.g., unit trusts). There is also a services
division providing infrastructural support to the other divisions including accounting,
auditing, personnel management, etc. Head Office employs some 1200 staff. There are
approximately 26 branch offices, comprising some 2000 staff divided into 12 regions.

Applications
The organization has over the years built a great many computer applications to support the
business, including: New Business (setting up of contracts accepted from applications),
Policy Administration, Claims Processing, Quotations and Commissions systems. They also
operate packaged software for Salaries, Assets Register and General Ledger. All of the
above systems run on an IBM Mainframe, installed some seven years ago. Most systems are
written in COBOL. About half make use of the TOTAL network database management
system. All online systems use the CICS transaction processing monitor. In all, there are
some 8000 modules. The applications have become increasingly unwieldy, unreliable and
difficult to maintain. The company is also experienCing difficulty finding TOTAL skills in
the marketplace.

New Developments
In the last five years, personal computers have been purchased by departments on an ad-hoc
basis. These were initially used for word processing and spreadsheet analysis, as well as
producing business presentations. Increasingly, they are being used to circumvent the
clumsy mainframe systems. Systems have sprung up in Lotus 1-2-3 "-: Microsoft Access """,
and dBase IV TN. This is not coordinated, and there have been numerous instances of lost data
and information corruption. There was recently a fraud scare as well.

The new General Manager, Mr. Renfrew, has initiated a strategy to replace all existing
systems with flexible applications developed on new technology over the next five years.
The plan calls for the use of Client Server technology to achieve rapid development,
scalability and cost effectiveness. You have been assigned to manage the overall project.
You have been briefed by Mr. Renfrew and his management team. They are looking for
rapid application development, responsive, easily maintained systems, a "seamless as
possible" migration from the legacy technology, and extreme reliability in applications
which are the lifeblood of the business.

358 Managing Information Technology Projects

Options
Options being considered include the use of relational database products (Sybase, Oracle,
SQL Server) and graphical development tools (Powerbuilder, SQL Windows). Local area
networks will probably use Novell servers, while wide area networks will use the industry
standard TCP/IP protocol and Unix servers.

Staff
From a staffing perspective, Handover has a centralized development team of 180 staff,
from application area managers down to junior programmers. There is a related support
group under the Data Base Administrator which provides development support, database
support and network support services. This group numbers some 28 people. The develop­
ment staff have good traditional mainframe skills, network database skills, some online
transaction processing experience and exposure to rigorous structured methodologies (al­
though these are not followed strictly, or on all projects). There are currently very few skills
in graphical user interfaces, event-driven programming, client server and relational database.

Introduction to Case Studies 359

ThoughtWell Books

Background
You are employed as a senior project manager by MacroSoft, a software house based in
Stockholm, Sweden, specializing in leading edge software development projects. MacroSoft,
founded in 1980, has a proud reputation for delivering systems meeting requirements to tight
deadlines. Much of the work currently undertaken involves networked microcomputers and
client server technology, which is also your background.

You have met with Jane Ostin, the marketing manager of a new client, ThoughtWell
Books, a major supplier of technical and specialist books to academics, students, industry
and the public. She has briefed you on a project which your management is keen to
undertake on their behalf.

The Problem and Opportunity
Jane has told you that obtaining technical books currently not in stock in the country has
always been a problematic process. The problem arises because books are ordered in bulk
from clearinghouses in the United States and United Kingdom. They are wholesalers and
will only ship in bulk. This means a consignment of at least 100 books, with a value not less
than 2 000 US dollars. They also ship via surface mail which can take between 6 and 10
weeks to arrive in Sweden. Coupled with the delay to assemble an order of the required size,
the delay to a customer wanting an unusual book can often extend to between 3 and 4
months.

Jane recently found a clearinghouse in the United States which is offering a new service.
They will accept orders for small volumes of books (minimum order 100 US dollars), and
ship per air ex-stock as soon as funds are cleared. Orders can be placed via e-mail on the
Compunerve network, once an account has been set up. Payment is normally made through
an approved international credit card (Vista, MonsterCard, American Excess). Jane sees a
major market opportunity to offer a new, rapid order service. Total turnaround time for an
order placed electronically and shipped by air could be as short as four to five days. This will
attract customers who are more interested in speedy delivery than the price of the books
concerned. The sale price will need to be some 30 to 40 percent higher than standard to
accommodate the air delivery, but clients in high-technology fields have indicated that this
would be acceptable.

Existing Computerization
ThoughtWell Books currently operates several branches: 4 in Sweden, 3 in Norway, 2 in
Denmark, and 1 each in Greenland and Finland. There is a distribution center in Goteborg,
Sweden. Each branch is equipped with a small number of Point of Sale (POS) terminals
which serve as cash registers while capturing details of payment, stock codes sold, discounts

360 Managing Information Technology Projects

allowed, and tax collected. POS terminals are connected to a 386 PC acting as a server in
each branch. At the Head Office in Stockholm, there is a 486 server which is linked to the
branches via dial-up lines. This server establishes connection with each branch in turn in the
morning, and again in the evening. In the morning, sales figures from the previous day are
collected for consolidation. In the evening, any new pricing details are transferred from
Head Office to the branches. There is a remote printer at the distribution center, but no other
computer equipment. All servers run Novell local area networking software. Wide area
communications use the TCPIIP protocol.

Software at the various locations includes:
Each Branch:
Stock System
This contains details of all books at the branch, including cost price and selling price. It is
updated by the central system transmitting details of books transferred to the branch from
the distribution center. If any book prices subsequently change, the price change is received
from H.O. and the records updated accordingly. A report notifies the branch staff of what
stock to expect from the distribution center, and pricing changes.

Sales System
Runs in the POS terminals and retrieves prices from the stock database. Updates stock on
hand. Collects sales statistics.

Head Office:
Publication Ordering System
Orders in bulk from conventional suppliers. Payments are authorized through the system
when consignments are received and reconciled to orders.

Payment System
Driven by the Publication Ordering System and the Salaries system. Issues checks and
generates bank transfer transactions on a magnetic tape.

Sales Consolidation System
Collects sales statistics from the branches and produces management reports.

Stock Distribution System
Determines, based on historical data regarding sales categories and volumes, what
proportion of newly arrived stock to distribute to which branches. Generates distribution
instructions to the distribution center, and notifies branches to expect arriving consignments.
Establishes selling prices based on cost prices and other parameters provided by marketing
manager.

Introduction to Case Studies 361

Price Change System
Allows RO. to change the selling price of a stock item. Transmits the change to the
branches to which stock of this kind has been sent.

Communications Service System
Provides reliable communications between RO. and branches. Acts as a service system to
business applications.

All of the above systems have been custom written using the dBase IV relational database
and application development product.

The salaries system is a package, previously provided by MacroSoft. This is written in
Clipper with compatible database formats to dBase. There are also a variety of PC packages
used by RO. staff, including the Word 6 word processor, the Lotus 1-2-3 '""spreadsheet and
the Pegasus e-mail package.

Requirements
Jane is keen to implement a system which will:

•

•

•

•

•

•

•

•

Allow online entry of orders for international books not in stock, including client
details if these are not yet on file. Client credit card details are to be checked, or
entered. This facility should be available on at least one POS terminal per branch, as
well as at Head Office.

Route these orders from the branch to RO.

Check that the requested items are not in stock within another branch, or on order
already.

If the item ordered is not already in stock or on order, pass the order on to a clerk at
RO. who will enter the cost price of the book from an international catalogue on
microfiche, and a selling price based on profit margins and projected shipping price.

Perform an online inquiry to the bank system to verify availability of funds on the
client's credit card.

Collect orders from the branches until they reach a value exceeding one hundred US
dollars. When this occurs, automatically generate an e-mail order to the US clearing
house, and transmit this via modem. The overseas clearing house will debit a credit
card account held by ThoughtWell Books.

Notify the branch that the book has been ordered and what the selling price should
be.

Upon receipt of the order, debit the client credit card via online connection to the
bank system. Notify the branch that the book has arrived and is being sent on via
airmaiL

Jane is keen to see a system in operation as soon as possible. A business associate had told
her your organization would be the best partner in achieving this. She is particularly
concerned that no competing bookstore should bring out a similar service before
ThoughtWell.

362 Managing Information Technology Projects

Adversary teams

Glossary
of Terms

A technique where a separate team is set up to try and break the code of a system at the
acceptance testing stage.

BANG
An estimating technique, developed by DeMarco, which assigns a technology-independent
functional weight to a system.

Baseline
The baseline is a snapshot of the status of all the deliverables and documents in place at the
termination of a particular phase in the development process.

CASE
(see Computer Assisted Software Engineering)

Change control
A management framework to ensure that adverse effects of changes requested and made to
systems are minimized.

COCOMO
A software estimating technique developed by Barry Boehm to estimate project cost, effort,
schedule and staffing. Among other things, the technique requires the number of source lines
of code (SLOCs).

Code inspections
A technique involving meetings where prepared participants review programs with a view to
increasing the quality of the program.

Computer Assisted Software/Systems Engineering (CASE)
Use of an automated software package (CASE tool) to assist in the analysis and design of an
infonnation system using modeling techniques and a repository.

CASE tool
An automated tool which supports the work of system engineers/developers. Normally
provides a dictionary/repository and diagram editors. Integrated CASE tools support several
phases of the lifecyc1e and code generation from specifications.

Glossary of Terms 363

Concession
Part of a requirement that could not be delivered and which the user concedes can be left out.

Configuration management
A technique used to help the project manager coordinate the work products of the team.
Documents the interrelationships of components, and their composition. Useful for change
management, estimation and quality assurance.

Context diagram
A high-level data flow diagram highlighting the scope and boundaries of a system.

Contingency
A budget amount in addition to the official project budget which is used to compensate for
unexpected problems. It is normally managed separately.

CPM
(see Critical Path Method)

Critical path
A path flowing through the activities with the longest estimated duration (relative to other
activities occurring in parallel) in a project network plan. The sum of the estimated durations
of activities on the critical path represents the minimum time it will take to complete the
project. Should any activity on the critical path take longer than estimated, the entire project
will slip (be delivered late). These are therefore the critical activities in the project.

Critical Path Method (CPM)
A network technique to define the tasks and dependencies in a project and to determine
which ones are on the critical path.

Data dictionary
A software package to capture, index and cross-reference meta data (data about data).
Would normally define the data elements, relations, relationships. aliases and role names of
a data model. Some are extensive and support CASE tools. These may contain the data for
various types of models, including process models, data models, and prototypes.

Data model
A model of data groups and their relationships. High-level models are normally represented
as a collection of entities and relationships. Detailed logical models are normally represented
as relational data models. Physical data models describe the physical structure of the
database as it would be defined to a database management system.

Deliverable
A tangible output which is produced by performing a task. This may be a document, a
model, a program, a control script or other piece of work.

DeMarco
An author and one of the fathers of structured analysis techniques.

Deviations
Where the specification or design differs from the requirements and is unacceptable to the
user.

364 Managing Information Technology Projects

Earned value
The value of the products that are complete and have been quality approved in the project.

Entity
An entity is a thing about which we want to record data. It may be a physical thing, such as a
Product, a conceptual thing such as a Sales Category, or a record of a transaction, such as an
Order or Payment. Entities can also represent abstractions or aggregations of things: e.g.,
Asset.

Entity Relationsbip Model
A model of the entities in a system and the relationships between them.

EQF
(see Estimating Quality Factor)

ERM
(see Entity Relationship Model)

Estimating group
A separate team of experienced analysts who assist the project team to estimate the project
size and duration of tasks.

Estimating Quality Factor (EQF)
The EQF, developed by DeMarco, is a measure of how effective the estimating process is.

Faculty Training Institute
A private training establishment offering Information System courses.

Feasibility study
An early stage in the SDLC to determine the technical, economic and business feasibility of
developing a proposed system, or mounting a given project.

FPA
(see Function Point Analysis)

Function Point Analysis (FPA)
A technique, developed at IBM by Albrecht, to measure the value of a system to its users by
quantifying its functionality.

Function points
A technology-independent score to assist in sizing a system.

Function(al) model
A model which describes the functions which a system will (or does) perform. May be
shown as a hierarchy (functional decomposition chart) or a set of data flow diagrams using
top-down decomposition.

Functional Decomposition Cbart (FDC)
A top-down model of the functions needed in a system with detailed processes at the lowest
level. Often used for packaging the functionality of a system, i.e., choosing functions to
implement in particular programs. A more detailed variant can be used for program design.

Glossary of Terms 365

Functional specification
A document produced at the end of the analysis phase of the SDLC showing the functions
the user requires developed.

Gane & Sarson
The originators of a widely used notation for data flow diagrams.

Growth Need Strength (GNS)
A measure of the perceived need of an individual to be challenged by, and to achieve
fulfillment in, the job.

IFPUG (International Function Point Users Group)
An influential group which evolves and publishes standards on how to calculate function
points.

Information Engineering (IE)
Developed by LT. guru James Martin together with Clive Finkelstein, this is an holistic set
of tools, techniques and methods to support enterprise wide planning, data modeling and
systems development.

Inspired
The name of the LT. consultancy of one of the authors.

Iterative lifecycle
A lifecycle where subsets of the system are built and tested as early as possible and
progressively expanded until the requirements are satisfied.

JAD
(see Joint Application Development)

Joint Application Development
Originally called Joint Application Design. A technique where intensive meetings, run by a
trained facilitator and with the participation of all stakeholders, are used to accelerate and
improve the quality of the analysis and design phases of the SDLC where prototypes,
process models and data models are built in real-time. CASE tools can be employed to assist
the process.

Ladder
A term used to describe the presence of a lead and lag in a network diagram.

Lag
A forced wait before an event can occur.

Lead
A forced wait before a task can commence.

Manageable Unit of Work
The longest planned duration allowed in a project plan, typically one week. An MUW is
often the lowest level task in a WBS. The duration will be increased where the risk is low,
the project is noncritical and the staff are competent. If the risk is high, the project is critical
or the staff are inexperienced, it should be reduced.

366 Managing Information Technology Projects

Matrix organization
An organization structure where staff from various functional departments work on a project
under the control of a project manager while their functional managers still retain control
over them.

Merise
A system development methodology favored by the French government.

Methodll
SDLC and PLC methodologies developed by Andersen Consulting which make extensive
use of automated tools.

Metrics
The techniques used to measure productivity, quality and effectiveness in a project.

Milestone chart
A high-level Gantt chart summarizing the key dates in a project.

Milestones
Key deliveries planned for achievement on specific dates. Normally associated with com­
pletion of key deliverables.

Motivating Potential Score (MPS)
A measurement of the richness of a job as perceived by the incumbent.

MUW
(see Manageable Unit of Work)

Object Oriented Technologies
The technology supporting a new approach to systems development where systems are
viewed as a set of reusable objects, containing both data and behaviors, akin to building
blocks.

OOT
(see Object Oriented Technologies)

Optimistic time
Used in PERT to determine a realistic, yet optimistic, estimate to complete a task.

Optional dependencies
Used in a network diagram to depict when a task can commence based on the completion of
one of the preceding tasks. This is a special case: a network diagram normally implies that
all preceding tasks must complete before the dependent task can proceed.

Pareto~s Law
The 80120 rule. For example, 80 percent of the systems developed in the world are com­
pleted by 20 percent of the project team members. The other 80 percent of the project team
members only produce 20 percent of the output (but probably also a lot of the disasters!).

Glossary of Terms 367

PBM
(see Product Breakdown model)

PERT
(see Program Evaluation & Review Technique)

Pessimistic time
Part of the estimating process in PERT. An estimate of the longest time it will take to
complete a task.

Phased delivery
Also called evolutionary development. Small but useful components of the system are built
and delivered to the user, giving them the impression that they are getting usable subsystems
every few months.

PLC
(see Project Lifecycle)

Product Breakdown Model (PBM)
A hierarchical chart showing the products the project will deliver.

Product Structure Model (PSM)
A hierarchical breakdown of all the deliverables to be produced for the system. This can be a
subset of the PBM.

Program Evaluation & Review Technique (PERT)
A technique used to model the activities in a project with their durations and dependencies.
Specifically, PERT provides techniques to predict the likelihood of meeting particular
estimates. It also allows prediction of optimistic and pessimistic times for delivery.

Project feasibility
The perceived chances of success for a project to meet its goals within constraints of time,
cost and resources.

Project Lifecycle (PLC)
The set of activities that are required, along with the SDLC activities, to manage a project.

Project partitioning
The breakdown of a large project into smaller, manageable chunks.

Project risk
The chances of encountering problems which would prevent achievement of the project
goals.

Project scope
The defined boundaries of the system requiring development. This can be specified in terms
of functionality and interfaces.

Prototyping
A technique where successively more accurate models are used to assist in designing the
user interface, data model and functionality. It can help refine ambiguous user requirements
prior to delivering the final system.

368 Managing Information Technology Projects

PSM
(see Product Structure Model)

QA
(see Quality Assurance)

QC
(see Quality Control)

Quality Assurance (QA)
The use of tools, techniques, standards and methods to deliver a quality product or service.

Quality Control (QC)
The final checking, prior to handover, to ensure a product conforms to requirements.

RAD
(see Rapid Application Development)

Rapid Application Development
The use of advanced lifecycles and techniques to deliver applications more quickly than can
be achieved using conventional techniques. Often used in Information Engineering context
to describe a lifecycle using prototyping, JAD and CASE.

Repository
A sophisticated data dictionary containing both data and knowledge about the data. Often
underlying CASE tools; sophisticated project management packages and configuration
management packages.

Request for Proposal
A document specifying the business problem to a potential supplier of I.T. services.

Resource leveling
An approach where workload peaks are identified and work is reallocated or rescheduled to
ensure that project team members have a realistic daily workload.

RFP
(see Request for Proposal)

SDLC
(see Systems Development Lifecycle)

Slack time
A project network term used to measure the delay which could occur for a particular activity
without delaying the overall project.

Slip chart
A chart used to visually depict project slippage by plotting planned delivery time against
actual delivery time.

SLOC
(see Source Lines of Code)

Glossary of Terms 369

Social Need Strength (SNS)
A measure of an individual's need for social interaction.

Software Metrics
(see Metrics)

Source Lines of Code (SLOC)
The number of statements in a source program. Variants: KSLOC = thousand source lines of
code, ESLOC = effective SLOC (i.e., minus comments).

SPC
(see Statistical Process Control)

SSADM
Structured Systems Analysis and Design Method. A systems development methodology
favored by the British government.

Statistical Process Control
A process incorporating a methodology, measurements, and change control to ensure that
the development process is repeatable and has predictable outputs. It allows us to make
gradual, sustained improvements in the process, leading to ever higher quality levels. Also
allows managing the impact of changes in methods and technology.

Steering committee
Managers who are responsible for the success of the project and meet on a regular basis to
discuss progress and problems.

Systems Development Lifecycle (SDLC)
The overall model of activities, deliverables and controls needed to produce a system.
Normally describes the modeling and technical tasks.

Systems Engineering Lifecycle
A rigorous SDLC used to develop extremely reliable systems using configuration
management techniques.

Task-in-node
Network notation where task descriptions are placed in nodes, and lines are only used to
indicate dependencies. Also called a precedence diagram.

Task-on-line
Project network notation used when an activity is recorded on a line and the event at a node.

Total Quality Management CfQM)
Encompasses QA and QC along with the company's overall quality environment.

TQM (see Total Quality Management)

User requirements
The original requirements whose satisfaction required the mounting of a project. Normally
specified by users assisted by business and/or systems analysts.

370 Managing Information Technology Projects

Value of Work Complete (VWC)
The value of the work delivered to date according to the original plan. Only work which has
been quality controlled is counted.

Version control
The retention of several historical versions of the project plan to facilitate analysis of the
current project estimates and problems and to identify improvements for furure projects.

VWC
(see Value of Work Complete)

WBS
(see Work Breakdown Structure)

Wide Band Delphi
A problem-solving technique used to gain consensus, using a group of experts. Useful
where empirical methods are not available.

Work Breakdown Structure (WBS)
A hierarchical model which represents the entire project at the top level and subdivides the
project into tasks at the lower levels. Used to identify detailed tasks which can then be
estimated prior to producing a project budget. Can also be used to record progress against
plan and to calculate Value of Work Complete.

Z
A formal specification language not mentioned anywhere in the book :-)

Glossary of Terms 371

Bibliography

Albrecht, AJ. : Measuring Application Development Productivity, 1979, Proceedings
IBM Share/GUIDE symposium, GUIDE International Corp., Chicago.

The seminal paper introducing the concept of measuring size of systems using functionality
delivered to a user (Function Points) rather than internal measures such as code size.

Bennis, Warren & Nanus, Burt: Leaders - The Strategies for Taking Charge, 1985,
Harper & Row, New York.

Definitive book on leadership. Practical with extensive examples. Accessible.

Bergen, S. A. : Project Management: An Introduction to Issues in Industrial Research
and Development, 1986, Basil Blackwell, Oxford, U.K.

Useful coverage of research and development type projects. Emphasis on product manage­
ment. Coverage of contractual and motivational issues.

Blanchard, Kenneth; Zigarmi, Patricia & Zigarmi, Drea : Leadership and the One Minute
Manager, 1985, Fontana Collins, u.K.

A very accessible and easy reading text covering leadership and situational leadership in a
management context.

Boehm, B.W. : Software Engineering Economics, 1981, Prentice-Hall, Englewood Cliffs,
New Jersey.

A defmitive text on the economics of software production. Includes many statistics and
cases. Relates work done by the U.S. Dept. of Defense and defence contractors such as
TRW. Empirical treatment of software estimating, including COCOMO model.

Booch, Grady: Object Oriented Design with Applications, 1991, Benjamin Cummings,
Redwood, CA.

A seminal work on object oriented analysis and design as applied in embedded systems and
systems engineering work.

Bibliography 373

Brooks, Fred: The Mythical Man-month, 1975, Addison-Wesley.

An account of the problematic OS360 project at IBM. One of the largest software projects
ever tackled. Many "home truth" lessons which seem obvious after the fact. A classic.

Card, D.N.; Clark T.L.; Berg R.A. : Improving SoftwarE: Quality and Productivity, 1987,
Systems, vol. 29 no. 5 June.

An excellent article discussing the application of statistical process control to the software
process, with empirical results from Computer Sciences Corp.

Chen, P. : The Entity Relationship Model: Towards a Unified View of Data, 1976, ACM
Transactions on Data Base Systems, Vol. 1 No.1.

The seminal paper introducing the concept of entity relationship modeling.

Crosby, P. : Quality Without Tears, The art of hassle free management, 1984,
McGraw-Hill, New York.

The most accessible and easy-reading text covering the total quality management
philosophy. Crosby is the originator of many of the techniques now widely practiced.
Covers the prevention philosophy in detail. Provides extensive guidance on introducing
Quality Management programs.

Couger, J.D. and Zawacki RA. : Motivating and Managing Computer Personnel, 1980,
Wiley-Interscience, New York.

The theories in this book have been tested successfully over the years in many countries and
published research has proven that 1.S. personnel worldwide are different from other
professional groups and can be managed in ways to enhance performance and motivation.

DeMarco, Tom: Controlling Software Projects: Management, Measurement and
Estimation, 1982, Yourdon Press, New York.

A book that every project manager will enjoy reading. Although over a decade old, the key
issues are still relevant. Arguing for better planning and control, DeMarco offers tools and
techniques which can be used immediately. The authors view this book as essential reading.

DeMarco, Top1 and Lister, Timothy: Peopleware: Productive Projects and Teams, 1987,
Dorset House, New York.

This book is fast becoming a classic text on managing the people aspects of project
management. Written in a light-hearted way, the highly respected authors develop sound
advice for project managers to get staff more motivated and more productive. Much of this
advice can be implemented at the project level. The book is relatively short and easy to
read.

Downs, E., Clare, P. & Coe, L : Structured Systems Analysis and Design Method
(SSADM) - Application and Context, 1981, Prentice Hall, UK.

374 Managing Information Technology Projects

Clear and concise exposition of the U.K. government mandated SSADM development
methodology.

Ewusi-Mensah, K. & Przasnyski, Z.H. : On Information Systems Project Abandonment:
An Exploratory Study, 1991, MIS Quarterly March, pp 66-85 .

Empirical investigation of why projects fail.

Fenton, N.E. : Software Metrics: A Rigorous Approach, 1991, Chapman & Hall, London.

This academic book takes the SDLC and applies measurement to all the important areas.
After explaining measurement theory, the author builds a framework to guide the reader
through the initial establishment of a measurement programme and, once established, the
measurement tools and techniques required for controL Many of the techniques are drawn
from research in the Esprit projects in Europe.

Flood, R.L. : Beyond TQM, 1993, John Wiley, Chichester, U.K.

A systems-oriented view of Total Quality Management. Fairly easy reading.

Franch, J.V. : METHODIl, 1987, Auerbach Publishers, pp 37-1-10.

Quick summary of the huge Andersen Consulting METHODII methodology.

Gane, Chris, and Sarson, Trish : Structured Systems Analysis, 1979, Prentice Hall,
Englewood Cliffs, NJ.

An excellent work which introduced the most widely used data flow diagramming standards
and techniques.

Gilb, Tom: Principles of Software Engineering Management, 1988, Addison-Wesley,
Wokingham.

Fun of practical ideas, the author, an eminent consultant, identifies practical approaches to
managing and controlling software engineering projects. The book is strong on ideas and
practical techniques which are all still relatively current.

Handy, Charles: The Age of Unreason, 1995, Arrow Books, London.

A systemic view of people and organizations in the future and how to handle some of the
complex problems leaders will be facing.

Humphrey, Watts S. : Managing the Software Process, 1989. Addison-Wesley, Reading,
Mass.

An up to date treatment of the software development process and the associated economic
issues. Introduces a valuable model for determining the degree of maturity of an
organi:z.ation with respect to maturity in the software production process. Covers innovations
such as CASE, I-CASE and the concept of Statistical Proces.g/Control.

IEEE., Draft Standard for Software Project Management Plans· IEEE p1058, 1987,
Institute of Electrical and Electronic Engineers Inc.

Bibliography 375

The standard which applies the rigorous engineering discipline of configuration manage­
ment to the software production process.

IFPUG (Robert Ragland, Chairman), Function Point Counting Practices Manual, Release
3.4,1992, International Function Point Users Group. Westerville, Ohio.

The definitive guideline on the counting of function points. Covers the original Albrecht
approach, expands on this in more detail, and also introduces a more modern approach based
upon data modeling. Has guidelines for development and enhancement projects.

Ivancevitch, J.M., Donnelly, J.H. and Gibson, J,L. : Management: Principles and
Functions, 1989, Fourth Edition, BPllIrwin, Boston.

This is a comprehensive introduction to management. Designed for any management posi­
tion, it develops a broad perspective on the management role by emphasizing the planning,
organizing, leading and controlling functions in great detail. A 700-page book that covers
the theories and techniques underpinning the need for all of us to become effective
managers.

Kerzner, H. : Project Management: A systems approach to planning, scheduling and
controlling, 1992, fourth edition, van Nostrand Reinhold, New York.

The classic text covering all aspects (1000 pages) of project management as applied in
engineering disciplines. This edition has expanded coverage of management and people
aspects, including conflict management and team building. Extensive engineering examples
and case studies. Of relevance is the section on concurrent engineering which complements
our discussion of program management.

Lustman, F. : Managing Computer Projects, 1984, Reston Publishing, Reston, Virginia.

This is one of the few texts specifically directed at computer systems development projects.
It has good coverage of the project design aspect.

Martin, James & Finkelstein, Clive: Information Engineering, Volume 1, 1981, Savant
Research Studies, Carnforth, Lancashire, U.K.

The landmark work in which Martin and Finkelstein introduced the Information Engineering
methodology which took data modeling as its central tenet in contrast to the process centered
methods predominant at the time. It also introduced the notion of enterprise-wide, rather
than application or project specific modeling and planning.

Martin, James: Recommended Diagramming Standards for Analysts and Program­
mers, 1987, Prentice-Hall, Englewood Cliffs, NJ

This book, developed with Dr Carma McClure, details a comprehensive but easily usable
and consistent set of diagramming standards for all common structured analysislI.E. analysis
and design deliverables, including: Entity Relationship diagrams, Decomposition charts,
process models, structure charts, action diagrams. These are the standards followed by most
I.E. CASE tools.

376 Managing Information Technology Projects

Martin, James: Principles of Object Oriented Analysis and Design ,1993, Prentice Hall,
Englewood Cliffs, NJ.

Extends Information Engineering to bring it right up to date with the Object Oriented
revolution. Developed with methodologist James Odell, provides a bridge from structured
techniques and I.E. knowledge to the 00 world.

McFarlan, F.W. : Portfolio Approach to Information Systems, 1981, Harvard Business
Review, Sept-Oct pp 142-150.

Useful background to project feasibility study. Introduces the idea of·a balanced portfolio of
projects. with some high-yield high-risk projects, but keeping the overall portfolio risk
acceptable.

McFarlan & McKenney : Corporate Information Systems Management: The Issues
Facing Senior Executives, 1983, Richard D Irwin, Homewood, IL.

Good managerial text covering critical issues in I.S. planning and strategy.

Metzger, P.W. : Managing a Programming Project, 1973, Prentice-Hall.

Very readable approach to project management in I.S. Somewhat dated now.

Moder, Joseph; Philips, Cecil & Davis, Edward: Project Management 'With CPM, PERT
and Precedence Diagramming. third edition, 1983, VanNostrand Reinhold, NY.

Very good coverage of the mechanics and calculations underlying the CPM and PERT
techniques.

Norden, see: Putnam

Olle, T.W.; Sol, H.G.; Vemijn-Stuart, A.A. (Editors) : Information Systems Design
Methodologies: A Comparative Review, 1982, North Holland, Amsterdam.

A comparison of popular system development methodologies. A Eurocentric perspective.
Refreshing after the predominantly American views we normally get.

Opperman, Piet : Gilld, the Comcon Project Management Methodology, 1987,
Comcon/QData, Johannesburg.

An excellent proprietary methodology incorporating many of the concepts used in this work.
Links to the Tetrarch strategic planning and development methodologies. Good integration
of management by objectives and thorough coverage of quality.

Parr, EN.: An Alternative to the Rayleigh Curve Model for Software Development
Effort, 1980, IEEE Transactions on Software Eng., vol. SE-6 no. 3, May, pp 291-296

Describes Parr's alternative to the Putnam-Norden model. This is better suited to small,
commercial projects and projects where some resources are already in place at the start.

Putnam, L.H.: Example of an Early Sizing, Cost and Schedule Estimate for an
Application Software System, 1978, Proceedings COMPSAC '78, IEEE, NY

Bibliography 377

Putnam introduces the NordenlPutnam model which describes the behaviour of software
projects with respect to resources and delivery date. This is the model underlying the SLIM
software estimation method and the PADS and Butler Cox (now CSC Index) databases.

Rakos, J.J. : Software Project Management for SmaU to Medium Sized Projects, 1990,
Prentice-Hall, New Jersey.

An excellent book produced by an ex-DEC employee who describes in detail how the
organization developed excellent computer software very successfully over many years.
Covering all areas of project management, the book uses lots of examples to help the
newcomer understand the problems and techniques. Somewhat lacking in the softer
management problems, the author nevertheless gives an excellent overview of the process
from a pragmatic viewpoint.

Schach, S.R. : Software Engineering, 1990, Irwin, Boston.

A good software engineering text. Good coverage of options for system development and
discussion of various lifecycles. Also extensive coverage of quality management in software
development. Coverage of some quantitative estimating techniques.

Sommerville, I. : Software Engineering, 1992, Addison-Wesley Publishing Co, WOking­
ham

An excellent and comprehensive text covering the full field of software engineering. Good
coverage of concepts related to configuration management.

Stewart, Rosemary: Managing Today & Tomorrow, 1991, Macmillan, Hampshire, U.K.

A text covering contemporary management theory. Well researched, current and well
written.

Tajima D. & Matsubara T. : The Computer Software Industry in Japan, 1981, Computer,
pp 89-%.

Fascinating account of how Hitachi software achieved very high quality levels in software
production.

Tetrarch International: The Tetrarchll Strategic Planning Methodology, 1987, Tetrarch
International, Holland.

An excellent I.E.-style strategic planning methodology now marketed by P.A. Consulting.

Tetrarch International : The Tetrarchl2 System Development Methodology, 1985,
Comcon, Johannesburg.

An information engineering approach to structured systems development incorporating a
unique process design and performance prediction component. Integrates with the GOLD
project management methodology. Both products now distributed by Q-Data Consulting.

Yeates, D. : Project Management for Information Systems, 1991, Pitman Publishing,
London.

378 Managing Information Technology Projects

A useful overview of project management with some emphasis on the project management
methodology PRINCE - the U.K. govt. "standard". Useful chapter on managing the
implementation of projects.

Y ourdon, E.: Managing the System Life Cycle: A Software Development Methodology
Overview, 1982, Yourdon Press.

Useful review of the structured systems life cycle.

Bibliography 379

A

B

c

Abstraction, 350
Achievement Tests, 299
Action Plans, 305
Activity Manager, 63
Adversary Teams, 256
Affirmative Action, 301
American Airlines, 21
Analyst/Programmer, 64,185
Analytical models, 97
Apollo Project, 3
Aptitude Tests, 298
Architecture, 346
Audition, 302

BANG,90
Baseline, 232
Bibliography, 373
Big bang, 328
Binary deliverable, 202
Bitmap, 269
Boehm,lOl
Boundary Management, 335
Budget, 205
Bugs, 255
Business Analyst, 64
Business Deadline, 19

Calendars, 175
Calendar Time, 97,160

o

Index

Capacity Management, 65
Career
Development, 319
Stages, 320

CASE, 86,268,335
Case Studies, 353
Central coordination, 334
Change
Control, 234
Management, 229
Request Form, 235
Request Tracking, 236

Chief Programmer Team, 131
Cockroach Theory, 257
Code Inspections, 254
Coding war, 211
Communication, 279
Styles, 280

Complexity, 85
Concessions, 232
Confidence limits, 83
Configuration Management, 229
Context Diagram, 25
Contingency, 107
COQ,249
Costs
per unit time, 181

Creeping Window, 106
Crises of Realization, 193
Critical Path Analysis, 162
Critical Path Method (CPM), 162

Data Architect, 65

Index 381

E

Data Manager, 65
Data modeling task, 44
Database Administration, 65
Database Administrator (DBA), 65
Deadly embrace, 156
Defects, 255

Removal,258
Deliverable, 29,51
Definition, 51
Definition example, 52

Delphi Technique, 94
Democratic Team, 132
Dependencies
Capturing, 176
Determining, 34
Optional, 157

Development Support, 65
Deviations, 232
Documentation, 267

Principles, 270
ProductModel,272

Duration,85

E-factor, 213
Effort
Distribution, 11
Factors affecting, 85

Egoless Programming Team, 132
Employment testing, 298
Entity Relationship Model deliver­
able definition, 52
Entity Relationship Modeling task,
44
Environmental factor, 213
ESPRIT,215
Estimate
Definition, 82
Most likely, 164
Optimistic, 164
Pessimistic, 164

Estimating, 33,79
Analytical models, 97
Empirical models, 98
Principles, 105
Quality Factor, 108
Techniques, 89
Through experience,97
Using analogy, 97

Ethical concerns, 20
Executive Sponsor, 63

F

G

H

J

382 Managing Information Technology Projects

Facilities Management, 65
Feasibil ity, 20
Feasibility Report, 22
Function Points, 91
Calculating, 92

Functional Partitioning, 138

Gantt Charts, 152
Generic Lifecycle, 74
Gleam Stores, 356
Glossary, 363
GNS.315
Gozinto. 159
Growth Need Strength, 315

Hammock, 158
Handover Trust, 358
Herzberg's theory, 313
Hygiene factors, 313

IEEE, 74,118
IFPUG,91
Illness, 104
Impact of change, 233
Implementation, 327
Impossible region, 101
Ineffective performance, 311
Information Center, 67
Information System Architect, 66
Information Systems Management,
63
Information Technology Architect,
66
Infrastructure, 61
Innovation, 253
Integrating Plans, 333
Interfaces, 347
Internal Business Auditor, 66
Interviewing, 280,296,302
Iterative Lifecycle, 124

JAD, 123,283

Job MBO,308
analysis, 293 MBTI,3oo
characteristics model, 315 McFarlan Risk Questionnaire, 143
description, 294 Measurement, 197
design, 292 Commercial Products, 215
specification, 295 Limitations, 201

Joint Application Development What to measure, 199
(JAD), 123, 283 Measures
Facilitator, 64 Integrating, 209
Leader, 284 Measuring Productivity, 200,206
Participants, 284 Progress, 201
Rules, 286 Reusability, 207
RWlning the session, 285 Meetings, 282
Scribe, 64,284 1\1ETKIT, 215
Session preparation, 285 Metrics, 199
Uses, 284 Mentor, 68

Justification, 24 Methods, 31,129

K Consistency, 336
Metrics programme, 214

Kaizen, 253
Microscheduling, 189
Milestone Charts, 152

L Minutes, 272
Mistakes, 215

Ladder, 156 Moral concerns, 20

Lag, 156 Motivation, 311
Potential,315 Languages and productivity, 88 Theory, 312

Lead,156
Leadership, 322 MPS, 316

Leave, 103
Multidisciplinary Teams, 134

Legal concerns, 20
Multiple Project Coordination, 333
MUW,46 Lifecycle choice, 115
Myers-Briggs Type Inventory, 300

Lines of Code (LOC), 90
LogicScope, 215 Myers rule, 257

Logistics, 351 MyWay Organizer Case, 354

M N

Machiavelli, 5
Negotiating, 281,340

Maintenance, 128
Network analysis, 159

Manageable Unit ofWork(MUW), Network Management, 65

46
Network techniques, 154

Management by Objectives, 308
Non-conformance, 242

Management Consistency, 129 Norden-Putnam curve, 98

Management Overhead, 96,104 0
Managing People, 291
Manhatten Project, 2 Object Oriented technologies,
Manmonth,91 86,126
Manpower acceleration, 100 Objectives
Martin-McClure notation, 272 Setting, 303
Martin-Odell notation, 272 Operations, 67
Maslow's Hierarchy, 312 Organization Model, 67

Index 383

p
OS/360 Project, 2

Package implementation, 128
PADS Database, 98
Parallel Projects, 191
Parallel run, 328
Parr model, 102
Participative Management, 133
Partitioning, 137
People, 61,291
People Management, 291
P>E>P,98
Performance Appraisal, 305

Absolute Standards, 307
Comparitive Approach, 307
Context, 308
Direct Index, 308
MBO,308
Process, 309
System, 307

Personality
differences in teams, 318
profile, 300
and team size, 318

PERT,163
Phased delivery, 124
Phased implementation, 328
Phases, 46
Overlapping, 119

PIR,259
Plan, 24
Planning Techniques, 151
POC,248
PONC, 242
Presentation, 282
Problem incidence, 259
Product, 55
Product Breakdown Model (PBM),
29
Product Structure Model (PSM), 256
Productivity, 206
Improvement, 244
In software delivery, 117
Index, 103
Measurement, 200
Organization factors affecting, 211

Program Evaluation and Review
Technique, 163
Program Management, 345
Programmer, 64

Q

384 Managing Information Technology Projects

Progress
Assessing, 192
Tracking, 166

Project
Abandonment, 193
Assumptions, 19
Attributes, 1
Budget, 19
Code, 18
Context, 9
Definition, 1, 17
Execution, 189
Goal,18
Initiation, 17
Justification, 24
Leader, 63
Life Cycle, 12,73
Meetings, 192
Priority, 18
Quality, Cost, Time, 18
Reporting, 219
Role Players, 9
Scope, 25
Sponsor, 9,18
Terms of Reference, 18
Title, 18
Types, 5

Project Design, 24
Project Librarian, 67
Project Management

Fundamentals, 4
History, 2
Institute, 4
Standards, 62
Tools, 62,173
vs Ordinary Management, 3

Project Manager, 7
Attributes, 7
Responsibilities, 8

Project Secretary, 66
Prototyping, 120
Pseudocode, 14
Psychometric Tests, 299
Putnam model, 99

Quality
Appraisal philosophy, 249
Assurance, 97,104,136,247
Assurance Auditor, 66
Checking, 191

R

s

Control, 248
Costs, 248
Definition, 241
Environment. 246
Improvement, 254
Management, 241,246
Measurement, 206
Model,251
Prevention philosophy, 250
Principles, 251

Qualigraph,215

Rapid Application Development (RAD),
75
Rayleigh curve, 99
Related Projects, 20
Reliability, 259
Report
Example, 222

Reporting, 219
Format, 221
Frequency, 221
Structures, 136
Using tools, 181

Repository, 174
Request for Proposal, 340
Requirements
Change, 206

Resources, 61
Assigning, 159
Definition, 178
Histogram, 179
Leveling, 179
Loading, 179
Obtaining, 190
Profiles, 62
Requirements, 62,130
Sharing, 336

Reusability, 207,260
Review, 231
Risk, 4

Assessment, 141,166
Control, 139

Sabre system, 21
Scheduling, 180

Micro, 189
Scope control, 229

T

SDLC,12,73,115
Self-monitoring, 214
Simulation, 350

lifecycJe, 126
Situational leadership, 322
Sizing, 89
Skills
Influence on effort, 85
Required, 33

Slack time, 162
SLIM,215
Slip Chart, 167
Social Need Strength (SNS), 316
Software Support, 66
Specification
Change, 85

Sponsor, 9,18,135
Staff
Motivation, 311
Selection, 294
Turnover, 85,205

Standards, 31,129
Statistical Process Control, 210
Strategic advantage, 21
Strategic Fit, 11
Structured graphics, 269
Steering Group, 136
Subcontractors, 339
Success, 34
Systems Analyst, 64
System Development Lifecycle, 12

vs Project Lifecycle, 73
Systems Engineering, 118
Systems Factory, 119
Systems Maintenance, 128

Tasks,39
Assignment, 67
Definition, 42,176
Definition example, 44
Determining, 31
Dependencies, 105
Executing, 191
Sources, 39
Sub tasks, 157
Summary, 157

Task in node notation,155
Task on line notation, 154
Team

building, 287

Index 385

formation, 316
selection, 134,316
size, 86
structure, 131

Technical Environment, 27
Technical Environment Model, 128
Technology implementation, 128
Temporal partitioning, 138
Tendering, 340
Testing, 256
Tetrarch methodology, 87
ThoughtWell Books Case, 360
Timebox, 126
Ti me pressure, 88
Timesheets, 203
Tools, 173
Facilities, 173
Future, 184
Repository, 174
Selection, 182

TQM,246
Tracking Progress, 219
Training, 103
Transclusion, 268
Turnover, 85,205
Types of Project, 5

u

v

w

386 Managing Information Technology Projects

Ultra Project, 3
User, 9

Involvement, 13,284
Manager, 63
System Manager, 63

Value of Work Complete (YWC), 202
Variables in Tension, 5
Version Control, 182

Walking about, 192
Waterfall Ii fec ycle , 116
What if?, 180
Wideband Delphi technique, 94
Work Breakdown Model (WBM), 40
Work Breakdown Structure (WBS),
34
used for estimating, 95

Work decompOSition, 41

	Introduction
	Chapter1
	Chapter2
	Chapter3_4
	Chapter5_6
	Chapter7
	Chapter8
	Chapter9
	Chapter10_11
	Chapter12
	Chapter13_14
	Chapter15
	Chapter16_17
	Chapter18
	Chapter19_20_21_22
	Intro_to_case_studies
	Glossary

